KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

Insulin-Like Growth Factor-I (IGF-I) from Crossbred Pregnant MareSerum to Increase Follicle Number of Mice (Mus musculus)

Published date: Dec 03 2017

Journal Title: KnE Life Sciences

Issue title: The Veterinary Medicine International Conference (VMIC)

Pages: 658-667

DOI: 10.18502/kls.v3i6.1195

Authors:

Abdullah AbdullahStudent of Veterinary Medicine Faculty Surabaya, 60115

Tjuk IRestiadiVeterinary Reproduction Departmentof Veterinary Medicine Faculty, Surabaya, 60115

Nunuk DR LastutiVeterinary Parasitology Department of Veterinary Medicine Faculty, Surabaya, 60115

Tita DamayantiVeterinary Reproduction Departmentof Veterinary Medicine Faculty, Surabaya, 60115

Wurlina WurlinaVeterinary Reproduction Departmentof Veterinary Medicine Faculty, Surabaya, 60115

Erma SafitriVeterinary Reproduction Departmentof Veterinary Medicine Faculty, Surabaya, 60115

Abstract:

The purpose of the research was to know the effect of Insulin-Like Growth Factor-I (IGF-I) derived from pregnant crossbred mare serum (PMS) in mice (Mus musculus) folliculogenesis. The subjects of this research were 20 female mice. The research was arranged by Completely Randomized Design (CRD) with four treatments and five replications. The treatments were C0 = 10 ng/ml of physiological NaCl, P1 = 10 ng/ml of IGF-I PMS, P2 = 20 ng/ml of IGF-I PMS, and P3 = 40 ng/ml of IGF-I PMS. Observed variables are the number of primary, secondary, tertiary and de Graff follicles. During the treatment, the estrous cycle was also observed. The data of follicles number were analyzed by Analysis of Variance (ANOVA) and followed by HSD (Honestly Significant Difference) test. The result showed that the addition of IGF-I PMS significantly affects (p<0.05) on increasing the primary and secondary follicles number. The addition of IGF-I PMS 20 ng/ml and 40 ng/ml can increase the primary and secondary follicles significantly (p<0.05). 

 

Keywords: IGF-I crossbreed mare serum pregnant; follicle; Mus musculus

References:

[1]
Direktorat Jendral Peternakan dan Kesehatan Hewan. 2015. Statistik Peternakan dan Kesehatan Hewan 2015. Kementerian Pertanian.
[2]
BPS. 2015. Peternakan. Badan Pusat Statistik Nasional.
[3]
Kementerian Pertanian. 2016. Peraturan Menteri Pertanian (Permentan) no. 48 tahun 2016 tentang Upaya Khusus Percepatan Peningkatan Populasi Sapi dan Kerbau Bunting. Kementerian Pertanian Republik Indonesia.
[4]
Ulum, F.M. dan Purwanta, B. 2015. Manual: Manajemen Kesehatan Reproduksi Ternak Sapi. Lembaga Penelitian dan Pengabdian Kepada Masyarakat. Institut Pertanian Bogor. Bogor.
[5]
Ismudiono, Srianto, P., Anwar, H., Madyawati, S.P., Samik, A., dan Safitri, E. 2010. Buku Ajar Fisiologi Reproduksi Pada Ternak. Airlangga University Press. Surabaya
[6]
Nursyah, D.A. 2012. Gambaran Siklus Estrus Tikus Putih (Rattus norvegicus) Ovariektomi Yang Diberi Tepung Daging Teripang (Holothuria scabra) [Skripsi]. Fakultas Kedokteran Hewan. Institut Pertanian Bogor. Bogor.
[7]
Palermo, R. 2007. Differential Actions of FSH and LH During Folliculogenesis. Reproductive BioMedicine Vol 15 3: 326-337.
[8]
Oberlender, G., Murgas, L.D.S., Zangeronimo, M.G., da Silva, A.C., Menezes, T.A., Pontelo, T.P. and Vieira, L.A. 2013. Role of Insulin-Like Growth Factor-I and Follicular Fluid from Ovarian Follicles with Different Diameters on Porcine Oocyte Maturation and Fertilization In Vitro. Theriogenology. 80: 319–327.
[9]
Neira, J.A., Tainturier, D., Pen, M.A. and Martal, J. 2010. Effect of the Association of IGF- I, IGF-II, bFGF, TGF-b1, GM-CSF, and LIF on the Development of Bovine Embryos Produced In Vitro. Theriogenology 73: 595–604.
[10]
Singhal, S., Prasad, S., Singh, B., Prasad, J.K. and Gupta, H.P. 2009. Effect of Including Growth Factors and Antioxidants in Maturation Medium Used for In Vitro Culture of Buffalo Oocytes Recovered In Vivo. Anim Reprod Sci. 113:44– 50.
[11]
Magalhaes-Padilhaa, D.M., Duarte, A.B.G., Araujo, V.R., Saraiva, M.V.A., Almeida, A.P., Rodrigues, G.Q., Matos, M.H.T., Campello, C.C., Silva, J.R. and Gastal, M.O. 2012. Steady-state Level of Insulin-Like Growth Factor-I (IGF-I) Receptor mRNA and The Effect of IGF-I on the In Vitro Culture of Caprine Preantral Follicles. Theriogenology 77:206–213.
[12]
Silva, J.R.V., Figueiredo, J.R., and van den Hurk, R. 2009. Involvement of Growth Hormone (GH) and Insulin-Like Growth Factor (IGF) system in ovarian folliculogenesis. Theriogenology 71: 1193–1208.
[13]
Echternkamp, S.E., Spicer, L.J., Gregory, K.E., Canning, S.F., and Hammond, J.M. 1990. Concentrations of insulin-like growth factor-I in blood and ovarian follicular fluid of cattle selected for twins. Biol Reprod. 43:8–14.
[14]
Pedersen, T., and Peters, H. Proposal For A Classification of Oocytes and Follicles in The Mouse Ovary. J Reprod Fertil. 1968; 17:555–557.
[15]
Gougeon, A. 1996. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 17:121–55.
[16]
Griffin, J., Benjamin, R., Emery, B.R., Huang, I., Peterson, C.M., Carrell, D.T. 2006. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 3:2.
[17]
Kusriningrum, R.S. 2011. Perancangan Percobaan. Airlangga University Press. Surabaya. Hal: 165-212.
[18]
Hoyer, P.B. 2004. Can the clock be turned back on ovarian aging?. Sci Aging Knowl Environ 2004;p: 11.
[19]
Bhattacharya, P and Keating, A.F. 2012. Impact of environmental exposures on ovarian function and role of xenobiotic metabolism during ovotoxicity. Toxicol Appl Pharmacol. 261:227–235.
[20]
Anderson, L,D. and Hirshfield, A,N. 1992. An overview of follicular development in the ovary: from embryo to the fertilized ovum in vitro. Md Med J; 41:614–620.
[21]
Edson, M.A., Nagaraja, A.K., and Matzuk, M.M. 2009. The mammalian ovary from genesis to revelation. Endocr Rev. 30:624–712.
[22]
Hirshfield, A.N. 1991. Development of follicles in the mammalian ovary. Int Rev Cytol. 124:43–101.
[23]
Elvin, J.A., and Matzuk, M.M. 1998. Mouse models of ovarian failure. Rev Reprod. 3:183–195.
[24]
Monget, P., Besnard, N., Huet, C., Pisselet, C., and Monniaux, D. 1996. Insulin-like growth factor-binding proteins and ovarian folliculogenesis. Horm Res. 45:211–217.
[25]
Giudice, L.C. 1992. Insulin-like Growth Factor and Ovarian Follicular Development. Endocrine Reviews. 13: 641-669.
[26]
Wandji, S.A., Teresa, L.W., Jennifer, C., Steven, W.L. and Hammond, J,M. 1998. Expression of Mouse Ovarian Insulin-like Growth Factor System Companent During Follicle Development and Atresia. Endocrinology. 134: 5205-5214.
[27]
Partodiharjo, S. 1992. Ilmu Reproduksi Hewan. Ed. Ke-3. Jakarta: Mutiara Sumber Widya.
[28]
Webb, R., Garnsworthy, P.C., Gong, J.G., and Armstrong, D.G. 2004. Control of Follicular Growth: Local Interaction and Nutritional Influence. Journal of Animal Science. 82: E63-E74.
[29]
Anwar, R. 2005. Morfologi dan Fungsi Ovaium. Subbagian Fertilitas dan Endokrinologi Reproduksi Bagian Obstetri dan Ginekologi Fakultas Kedokteran Unpad
[30]
Gannon, A.M. 2013. Expossure To Cigarette Smoke And Its Impact On The Ovarian Follicle Population Mechanisms Of Follicle Loss. Canada: McMaster University.
[31]
Roche, J.F. 1998. Controls of Folliculogenesis. J Theriology. 49: 457-467.
[32]
Peters, A.R. 1985. Hormonal Control of Bovine Oestrous Cycle 1. The Natural Cycle. Br. Vet. J. Reprod. Fertil. 14: 546-573
[33]
Rochler, M.M. 1993. Insulin-like Growth Factor Binding Protein, Vitamins and Hormone. J. Reprod. Fertil. 47: 1-114

Download
HTML
Cite
Share
statistics

324 Abstract Views

357 PDF Downloads