KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Experimental Study of Dielectric Barrier Discharge Plasma Actuators for Active Flow Control

Published date: Jun 02 2020

Journal Title: KnE Engineering

Issue title: International Congress on Engineering — Engineering for Evolution

Pages: 487–499

DOI: 10.18502/keg.v5i6.7064

Authors:

Miguel André Barbosa Moreira - miguel.andre.moreira@ubi.pt

Frederico Miguel Freire Rodrigues

José Carlos Páscoa Marques

Abstract:

The objective of this study is to compare the effect of varying the material used as dielectric layer on the properties of the plasma actuators themselves. The experiments have shown that actuators with a PIB dielectric have a lower power consumption, can achieve higher velocities and have a better mechanical efficiency, but are more prone to failure due to breakdown of the dielectric. We verified that PIB rubber is a suitable material for DBD plasma actuators fabrication presenting several interesting features.

Keywords: Active flow control, Plasma actuators, Dielectric barrier discharge, Dielectric materials

References:

[1] Rodrigues F, Pascoa J, Trancossi M. Heat generation mechanisms of DBD plasma actuators. Exp Therm Fluid Sci 2018;90:55–65. doi:10.1016/j.expthermflusci.2017.09.005.

[2] Abdollahzadeh, M.; Rodrigues, F.; Pascoa, J. C.; Oliveira, P. J.: “Numerical design and analysis of a multi-DBD actuator configuration for the experimental testing of ACHEON nozzle model” Aerospace Science and Technology, Vol. 41 (2015), pp. 259-273.

[3] Rodrigues F, Mushyam A, Pascoa J, Trancossi M. A new plasma actuator configuration for improved efficiency: the stair-shaped dielectric barrier discharge actuator. J Phys D Appl Phys 2019;52:385201– 385014.

[4] Rodrigues, F. F.; Pascoa, J. C.; Trancossi, M. Analysis of innovative plasma actuator geometries for boundary layer control. Proceedings of the ASME 2016 International Mechanical Engineering Congress & Exposition, Phoenix, Arizona, USA, Nov 2016.

[5] Kotsonis, M.; Veldhuis, L.: “Experimental Study on Dielectric Barrier Discharge Actuators Operating in Pulse Mode” Journal of Applied Physics, Vol. 108 (2010), pp. 1-9.

[6] Enloe, C. L.; McLaughlin, T. E.; Font, G. I.; Baughn, J. W.: “Parameterization of Temporal Structure in the Single-Dielectric-Barrier Aerodynamic Plasma Actuator” AIAA Journal, Vol. 44 n° 6 (2006), pp. 1127-1136.

[7] Rodrigues F, Pascoa J, Trancossi M. Experimental analysis of dielectric barrier discharge plasma actuators thermal characteristics under external flow influence. J Heat Transfer 2018;140:102801

[8] Corke, T. C.; Enloe, C. L.; Wilkinson, S. P.: “Dielectric Barrier Discharge Plasma Actuators for Flow Control” Annual Reviews of Fluid Mechanics, Vol. 42 (2010), pp. 505-529.

[9] Tirumala, R.; Bernard, N.; Moreau, E.; Fenot, M.; Lalizel, G.; Dorignac, E.: “Temperature characterization of dielectrc barrier discharge actuators: influence of electrical and geometric parameters” Journal of Physics D: Applied Physics, Vol. 47 n° 255203 (2014), pp. 12.

[10] Thomas, F.; Corke, T.; Iqbal, M.; Kozlov, A.; Schatzman, D.: “Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control” AIAA Journal, Vol. 47 n° 9 (2009), pp. 2167-2178.

[11] Schatzman, D. M.; Thomas, F. O.: “Turbulent Boundar-Layer Separation Control with Single Dielectric Barrier Discharge Plasma Actuators” AIAA Journal, Vol. 48 (2010), pp. 1620- 1634.

[12] Font, G. I.: “Boundary-Layer Control with Atmospheric Plasma Discharges” AIAA Journal, vol. 44 (2006), pp. 1572-1578.

[13] Porter, C. O.; McLaughlin, T. E.; Enloe, C. L.; Font, G. I.; Roney, J.; Baughn, J. W. Boundary Layer Control Using a DBD Plasma Actuator. AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.

[14] Opaits, D. F.; Roupassov, D. V.; Starikovskaia, S. M.; Starikovskii, A. Y.; Zavialov, I. N.; Saddoughi, S. G. Plasma Control of Boundary Layer Using Low-Temperature Non-Equilibrium Plasma of Gas Discharge. AIAA Aerospace Sciences Meeting and Exhibit, Reno Nevada, 2005.

[15] Post, M.; Corke, T.: “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators” AIAA Journal, Vol. 42 n° 11 (2004), pp. 2177-2184.

[16] Huang, J.; Corke, T. C.; Thomas, F. O.: “Plasma Actuators for Separation Control of Low- Pressure Turbine Blades” AIAA Journal, Vol. 44 (2006), pp. 51-57.

[17] Kelley, C.P.; Bowles, P.; Cooney, J.; He, C.; Corke, T. C.; Osborne, B.; Silkey, J.; Zehnle, J. High Mach Number Leading-edge Flow Separation Control Using AC DBD Plasma Actuators. Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 2012.

[18] Poon, D. Separation Control using Plasma Actuators: Experimental Studies of Plasma Actuator Performance. University of Minnesota, 2011.

[19] Liu, C., Roth, J. Boundary layer control by a one atmosphere uniform glow discharge plasma layer. IEEE International Conference on Plasma Science, 1995.

[20] Roth, J. R., Sherman, D. M., Wilkinson, S. P. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.

[21] Enloe, C.; McLaughlin, T.; VanDynken, R.; Kachner, K.: “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Geometric Effects” AIAA Journal, Vol. 42 n° 3 (2004), pp. 595-604.

[22] Enloe, C.; McLaughlin, T.; VanDynken, R.; Kachner, K.: “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology” AIAA Journal, Vol. 42 n° 3(2004), pp. 589-594.

[23] Hyun, K.; Chun, C.: “The Wake Flow Control Behind a Circular Cylinder Using Ion Wind”, Experiments in Fluids, Vol. 35 (2003), pp. 541-552.

[24] Sung, Y.; Kim, W.; Mungal, M.; Cappelli, M.: “Aerodynamic Modification of Flow Over Bluff Objects by Plasma Actuation”, Experiments in Fluids, Vol. 41 (2006), pp. 479-486.

[25] Post, M.; Corke, T.: “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators”, AIAA Journal, Vol. 42 n°.11 (2004), pp. 2177-2184.

[26] M. Kotsonis, “Diagnostics for characterisation of plasma actuators,” Measurement Science and Technology, vol. 26, pp. 1-30, 2015.

[27] N. Bernard and E. Moreau, “Electrical and mechanical characteristics of surface ac dielectric barrier discharge plasma actuators applied to airflow control,” Experiments in Fluids, vol. 55, pp. 1-43, 2014.

[28] J. Kriegseis, B. Moller, S. Grundmann, C. Tropea, “Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators”, Journal of Electrostatics, vol. 69, issue 4, pp. 302-312, 2011

[29] Leger, L., Moreau, E., and Touchard, G., 2002. “Electro hydrodynamic airflow control along a flat plate by a dc surface corona discharge - velocity profile and wall pressure measurements”. In 1st Flow Control Conference, pp. 1–11.

[30] Rodrigues, F. F.; Pascoa, J. C.; Trancossi, M. Experimental analysis of alternative dielectric materials for DBD plasma actuators. Proceedings of the ASME 2018 International Mechanical Engineering Congress & Exposition, Pittsburgh, Pensilvania, USA, Nov 2018.

[31] Pons, J., Moreau, E., and Touchard, G., 2005. “Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow

Download
HTML
Cite
Share
statistics

1451 Abstract Views

986 PDF Downloads