KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Performance Evaluation of IEEE 802.11 ac WPA2 Laboratory Links

Published date: Jun 02 2020

Journal Title: KnE Engineering

Issue title: International Congress on Engineering — Engineering for Evolution

Pages: 182–194

DOI: 10.18502/keg.v5i6.7033

Authors:

José A. R. Pacheco de Carvalho - pacheco@ubi.pt

Cláudia F. F. P. Ribeiro Pacheco

Antonio D. Reis .

Hugo Veiga

Abstract:

The increasing importance of wireless communications, involving electronic devices, has been widely recognized. Performance is a fundamental issue, resulting in more reliable and efficient communications. Security is also crucially important. Laboratory measurements are presented about several performance aspects of Wi-Fi IEEE 802.11ac WPA2 point-to-point links. Our study contributes to performance evaluation of this technology under WPA2 encryption, using available equipment (Cisco 2702i access points and TP-Link AC1900 USB 3.0 adapters). New results are given from TCP and UDP experiments concerning TCP throughput versus TCP packet length, jitter and percentage datagram loss versus UDP datagram size. Comparisons are made to corresponding results for WPA2 802.11n. Conclusions are drawn about the comparative performance of the links.

Keywords: Wi-Fi, WLAN, IEEE 802.11ac, Wireless network laboratory performance, Point-to-Point WPA2 links

References:

[1] Web site http://standards.ieee.org; IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11i, 802.11ac standards.

[2] 802.11ac wireless throughput testing and validation guide (2018). http://www.cisco.com accessed 3 Sept 2019.

[3] Mark, J. W. and Zhuang, W. (2003). Wireless Communications and Networking. (New Jersey: Prentice- Hall).

[4] T Rappaport, T. S. (2002). Wireless Communications Principles and Practice. (New Jersey: Prentice- Hall).

[5] Bruce W. R. and Gilster, R. (202). Wireless LANs End to End. (New York: Hungry Minds).

[6] Schwartz, M. (2005). Mobile Wireless Communications. (Cambridge: Cambridge University Press).

[7] Sarkar, N. and Sowerby, K. (2006). High Performance Measurements in the Crowded Office Environment: a Case Study. ICCT ’06-International Conference on Communication Technology. (Guilin, China), pp. 1-4.

[8] Boavida, F. and Monteiro, E. (2011). Engenharia de Redes Informáticas, (Lisbon: FCA-Editora de Informática Lda).

[9] Pacheco de Carvalho, J. A. R., Veiga, H., Gomes, P. A. J., et al (2010). Wi-Fi Point-to-Point Links- Performance Aspects of IEEE 802.11 a,b,g Laboratory Links. Electronic Engineering and Computing Technology, Series: Lecture Notes in Electrical Engineering, (Netherlands: Springer), vol. 60, pp. 507- 514.

[10] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2016). Extended Performance Research on Wi-Fi IEEE 802.11 a, b, g Laboratory Open Point-to-Multipoint and Point-to- Point Links. Transactions on Engineering Technologies. (Singapore: Springer), pp. 475-484.

[11] Pacheco de Carvalho, J. A. R., Veiga, H., Marques, N., et al (2011). Wi-Fi WEP Point-to-Point Links- Performance Studies of IEEE 802.11 a,b,g Laboratory Links. Electronic Engineering and Computing Technology, Series: Lecture Notes in Electrical Engineering. (Netherlands: Springer), vol. 90, pp. 105- 114.

[12] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2014). Extended Performance Studies of Wi-Fi IEEE 802.11a, b, g Laboratory WPA Point-to-Multipoint and Point-to- Point Links. Transactions on Engineering Technologies: Special Volume of the World Congress on Engineering 2013, (Gordrecht: Springer), pp. 455-465.

[13] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2014). Performance Evaluation of IEEE 802.11 a, g Laboratory WPA2 Point-to-Multipoint Links. Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress of Engineering 2014, (London: WCE 2014), pp. 699-704.

[14] Pacheco de Carvalho, J. A. R., Veiga, H., Marques, N., et al (2010). Performance Measurements of a 1550 nm Gbps FSO Link at Covilhã City, Portugal. Proc. Applied Electronics 2010 - 15th International Conference (University of West Bohemia, Czech Republic), pp. 235-239.

[15] Bansal, D., Sofat, S., Chawla, P., and Kumar, P. (2011). Deployment and Evaluation of IEEE 802.11 based Wireless Mesh Networks in Campus Environments. Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2011, (London: WCE 2011), pp. 1722-1727.

[16] Padhye J., Firoiu, V., Towsley, D., and Kurose, J. (1998). Modeling TCP Throughput: A Simple Model and its Empirical Validation. SIGCOMM Symposium Communications, Architecture and Protocols, pp. 304-314.

[17] Mathis, M., Semke, J. and Mahdavi, J. (1997). The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm. ACM SIGCOMM Computer Communication Review, vol. 27, issue 3, pp. 67-82.

[18] Pacheco de Carvalho, J. A. R., Veiga, H., Ribeiro Pacheco, C. F., and Reis, A. D. (2019). Extended Performance Research on 5 GHz IEEE 802.11n WPA2 Laboratory Links. Transactions on Engineering Technologies (Singapore: Springer), pp. 313-323.

[19] Cisco Aironet 2700 Series Access Points (2014). http://www.cisco.com accessed 3 Jun 2019.

[20] AT-8000S/16 level 2 switch technical data (2009). http://www.alliedtelesis.com accessed 10 Dec 2018.

[21] AC1900 High Gain Wireless Dual Band USB Adapter Archer T9UH (2018). http://www.tp-link.com accessed 10 Jun 2019.

[22] Acrylic WiFi software (2016). http://www.acrylicwifi.com accessed 8 Jan 2019.

[23] Iperf software (2019). http://iperf.fr accessed 16 Feb 2019.

[24] Network Working Group. RFC 1889-RTP: A Transport Protocol for Real Time Applications. http://www. rfc-archive.org accessed 3 Jan 2019.

[25] Bevington, P. R. (1969). Data Reduction and Error Analysis for the Physical Sciences (New ork: McGraw- Hill).

Download
HTML
Cite
Share
statistics

790 Abstract Views

431 PDF Downloads