KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Contributions for Conceptual Geohydraulic Model of the Underground Hydric Resources of Meda Municipality

Published date: May 03 2020

Journal Title: KnE Engineering

Issue title: STARTCON19 - International Doctorate Students Conference + Lab Workshop in Civil Engineering

Pages: 241–255

DOI: 10.18502/keg.v5i5.6947

Authors:

Pedro Coelho Ferreirapedroferreirajc@gmail.comMunicípio de Meda, Largo do Município, 6430-197, PhD Student in Beira Interior University, Beira Interior University, 6201-001 Covilhã, Portugal

Luis Ferreira GomesBeira Interior University, 6201-001 Covilhã & GEOBIOTEC; Portugal

Alcino Sousa OliveiraTrás-os-Montes e Alto Douro University, Quinta de Prados, 5001-801 Vila Real, CGEO & CEMMPRE, Portugal

Abstract:

This paper presents contributions on underground hydric and geothermal resources of the Meda Municipality land. After a brief introduction about the importance of the theme, the Meda municipality’s administrative, geographic, geomorphological and geological frameworks are presented in a synthetic way. The main hydrogeological units of the municipality are presented below and, based on the water surpluses resulting from precipitation, the order of magnitude of the water reserves of those hydrogeological units is advanced. From a vast field survey of groundwater points on the various hydrogeological units, the results obtained from the expeditious physicalchemical parameters are presented, and based on them some waters were selected to carry out complete physical-chemical and some isotopes analyses. Based on all the results, the municipality was organised in three different major hydrogeological domains (Longroiva, Areola, and Graben), for which the conceptual geohydraulic model was developed. From the several results, it is emphasized in particular that in the various domains there are potential to explore special groundwater with characteristics not only for medical spa and aqua-ludic spaces, but also for the production of energy and even not only heat energy, with cascading uses, but also for the production of electricity from groundwater from 70 to 113∘C.

References:

[1] Direção-Geral do Território. Carta Administrativa Oficial de Portugal (CAOP), shapefile. Lisboa. (2017).

[2] Global country boundaries (Arcgis by ESRI). Global country boundaries from DIVA-GIS. Shapefile from iangliangcun@gmail.com_ucsb. Available online: https://www.arcgis.com/home/item.html?id= 2ca75003ef9d477fb22db19832c9554f (accessed on 05-05-2019).

[3] Brum Ferreira. O relevo de Portugal Grandes Unidades Regionais. Associação Portuguesa de Geomorfólogos. Edição Fundação para a Ciência e a Tecnologia. Coimbra. Volume II. pp. 97-110. (2004).

[4] A.F. Silva, M.L. Ribeiro. Notícia Explicativa da Folha 15-A. Vila Nova de Foz Côa. S.G.de Portugal. Lisboa. 52 p. (1991).

[5] A. Ribeiro, M.T. Antunes, M.P. Ferreira, R.B. Rocha, A.F. Soares, G. Zbyszewski, F. Moitinho de Almeida, D. Carvalho, J.H. Monteiro. Introduction à la géologie générale du Portugal. Serviços Geológicos de Portugal. Lisboa. 114 p. (1979).

[6] DGT. MDT50m-WMS. http://id.igeo.pt/sdg/4d0b0a9e2b4c41a886929d97b61ac459. (2007).

[7] APA,I.P. Atlas do Ambiente. Shapefile de Hidrologia. (2018).

[8] R., Dias, A. Ribeiro, C. Coke, E. Pereira, J. Rodrigues, P. Castro, N. Moreira, J. Rebelo. Evolução estrutural dos sectores setentrionais do autóctone da Zona Centro-Ibérica. In: R. Dias, A. Araújo, P. Terrinha, J.C. Kullberg (Eds), Geologia de Portugal, vol. 1, Escolar Editora. pp. 73-147. (2013).

[9] C. Meireles, E. Pereira, N. Ferreira, P. Castro. O Ordovícico da Serra da Marofa: novos dados litoestratigráficos e estruturais. VII Congresso Nacional de Geologia. Sociedade Geológica de Portugal. pp. 641-644. (2006).

[10] M.R. Azevedo, B.V. Aguado. Origem e Instalação de Granitóides Variscos na Zona Centro-Ibérica. In: R. Dias, A. Araújo, P. Terrinha, J.C. Kullberg (Eds), Geologia de Portugal, vol. 1, Escolar Editora. pp. 377-402. (2013).

[11] C.W. Thornthwaite, J.R. Mather. Instruction an tables for comunting potencial evapotranpiration and the water balance. Centerton, N J, EUA, Laboratory of Climatology Publication, no 10. (1957).

[12] SGP. Carta Geológica de Portugal, Escala 1/500000. Serviços Geológicos de Portugal, Lisboa. (1992).

[13] LNEG. Carta Geológica de Portugal à escala 1:500000. 5ª edição da Carta Geológica de Portugal à escala 1:500000 publicada pelos Serviços Geológicos de Portugal em 1992. Unidade de Geologia, Hidrogeologia e Geologia Costeira. Laboratório Nacional de Energia e Geologia, I.P. Lisboa. (2019). Web Map Services: http://geoportal.lneg.pt/arcgis/services/CGP500k/MapServer/WMServer?request= GetCapabilities&service=WMS

[14] P.P. Cunha, D.I. Pereira. Evolução cenozóica da área de Longroiva – Vilariça (NE Portugal). Ciências da Terra (UNL), 14: pp. 89-98. (2000).

[15] L.M. Ferreira Gomes. Estudo Hidrogeológico para Enquadramento Legal das Termas de Longroiva. CMM, UBI, Relatório inédito interno. 48 p. (2001).

[16] Coelho Ferreira, P. J. Modelação de sistemas geohidráulicos profundos associados a fraturas extensas da região da Meda. Ph.D. Thesis, Univ. da Beira Interior. Covilhã, 2020 (in press).

[17] C.W. Fetter. Applied Hydrogeology. Macmillan: New York, 3rd ed., 691 p. (1994).

[18] P.J. Coelho Ferreira, L.M. Ferreira Gomes, A.S.C. Oliveira, P.E.M Carvalho. Contribution to the knowledge of the geothermal potential of the Municipality of Meda (Portugal). Proceedings World Geothermal Congress; Australia-New Zealand, 19-24 April; Edited by Horne, R and Boyd, T., paper 16012, 12p. (2015).

[19] L. Rybach. Determination of termal water circulation depth, with examples from the Valaisan Alpes, Switzerland. Memoires of the 22nd Congress of IAH, Vol. XXII. Lusanne, pp.608-615. (1990).

Download
HTML
Cite
Share
statistics

270 Abstract Views

237 PDF Downloads