KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Probióticos Como Aditivos Dietéticos Para Cerdos. Una Revisión/Probiotics as Dietetic Additives for Pigs. A Review

Published date: Jan 26 2020

Journal Title: KnE Engineering

Issue title: VI Congreso Internacional De La Ciencia, Tecnología, Emprendimiento E Innovación 2019

Pages: 477–499

DOI: 10.18502/keg.v5i2.6267

Authors:

V Morales-Oñatevictor.morales@uv.clDepartamento de Desarrollo, Ambiente y Territorio, Facultad Latinoamericana de Ciencias Sociales; Subgerencia de Analítica de Datos, Banco Solidario; Facultad de Ciencias Económicas, Universidad Central del Ecuador

B Morales-OñateFacultad de Ciencias, Escuela Superior Politécnica de Chimborazo

Abstract:

Por varias décadas se ha utilizado en los sistemas intensivos y semi intensivos de producción porcina los antibióticos promotores de crecimiento, con la finalidad de controlar los problemas digestivos y respiratorios y mejorar la eficiencia. Sin embargo, su utilización en la alimentación de animales destinados al consumo humano, se relaciona con la crisis de salud global por la resistencia a los antimicrobianos. A nivel internacional, varias jurisdicciones respondieron a través de la restricción o prohibición del uso de estos productos. Esta situación condujo a que diferentes grupos de investigación se centraran en el estudio y desarrollo de alternativas para mantener la salud de los animales y el rendimiento productivo. Dentro de estas alternativas se incluyen probióticos que son uno de los aditivos alimentarios más estudiados y se definen como microorganismo(s) vivo (s) que cuando se adicionan en cantidades adecuadas influyen benéficamente en la salud del huésped. La aplicación de estos productos en la alimentación de cerdos puede modular la respuesta inmune y mejorar los parámetros zootécnicos de conversión alimenticia y ganancia de peso vivo final. Además, se pueden utilizar en el tratamiento de enfermedades infecciosas digestivas, como la diarrea, lo que aporta un beneficio económico importante en la industria porcina. En este estudio, se realizó una revisión de las diferentes etapas fisiológicas de cerdos con 23 citas bibliográficas y 50 referencias sobre la utilización de probióticos en la especie porcina como la utilización de probióticos en la alimentación.

For several decades, antibiotic growth promoters have been used in intensive and semi-intensive systems of swine production, with the purpose of controlling digestive and respiratory problems and improving efficiency. However, its use in feeding animals destined for human consumption is related to the global health crisis due to resistance to antimicrobials. Internationally, several jurisdictions responded by restricting or prohibiting the use of these products. This situation led to different research groups focusing on the study and development of alternatives to maintain animal health and productive performance. These alternatives include probiotics that are one of the most studied food additives and are defined as live microorganism (s) that, when added in adequate amounts, beneficially influence the health of the host. The application of these products in pig feed can modulate the immune response and improve the zootechnical parameters of feed conversion and final live weight gain. In addition, they can be used in the treatment of digestive infectious diseases, such as diarrhea, which provides a significant economic benefit in the swine industry. In this study, a review was made of the different physiological stages of pigs with 23 citations and 50 references on the use of probiotics in swine as the use of probiotics in food.

Palabras Claves: Probióticos, antibióticos, rendimiento productivo, salud del huésped.

Keywords: Probiotics, antibiotics, productive performance, guest health.

References:

[1] Davies, P. 2011. Intensive Swine Production and Pork Safety. Foodborne Pathogens and disease. 8: 189–201.

[2] Cajarville, C., Brambillasca, S. & Zumino, P. Utilización de prebióticos en monogástricos: aspectos fisiológicos y productivos relacionados al uso de subproductos de agroindustrias y de pasturas en lechones. Revista Porcicultura Iberoamericana. 1: 1–11.

[3] Maron, D., Smith, T. & Nachman, K. 2013. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Globalization and Health. 9: 1–11.

[4] Thacker, P. 2013. Alternatives to antibiotics as growth promoters for use in swine production. Journal of Animal Science and Biotechnology. 4: 1–12.

[5] FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canadá. Disponible en: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Consultado, enero 2019

[6] Jurado, H., Romo, S., & Benavidez, V. 2013. Evaluación del efecto probiótico de Lactobacillus plantarum en la alimentación de lechones en fase de precebo como una alternativa del uso de antibióticos. Revista Investigación Pecuaria. 2: 55–62.

[7] FAO. 2014a. Cerdos, Producción y Sanidad Animal. Disponible en: . Consultado, Enero 2019.

[8] FAO. 2014b. Cerdos y producción animal. Producción y Sanidad Animal. Disponible en . Consultado, Enero 2019.

[9] INEC. 2010. Instituto Nacional de Estadísticas y Censos. Estadísticas de la Semana. Resultados Censos de Población. Disponible en .Consultado, Enero 2019.

[10] ProChile. 2013. Estudio de Canal de Distribución Carne de Cerdo en Ecuador. Disponible en . Consultado, Enero 2019.

[11] ASPE. (2013). Asociación de Porcicultores del Ecuador. Primer censo porcino 2010. Estadísticas censo porcino 2013. Disponible en . Consultado, Enero 2019.

[12] Herpin, P., Le Dividich, J., Hulin, J.C., Fillaut, M., De Marco, F. & Bertin, R. (1996). Effects of the level of asphyxia during delivery on viability at birth and early postanatal vitality of newborn pigs. Journal of Animal Science. 74: 2067–2075.

[13] English, R., Smith, W. & Maclean, A. 1985. La cerda: cómo mejorar su productividad. 2nd ed. Ed. El Manual moderno. S.A. México, México. p. 391.

[14] Bengmark, S. 1998. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 42: 2–7.

[15] Lambert, G. 2009. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. Journal Animal Science. 87: 101–108.

[16] Mackie, R. & White, B. 1997. En: Gastrointestinal Microbiology. Vol. 1. Gastrointestinal ecosystems and fermentations. Chapman & Hall Microbiology Series. New York, USA. 658 p.

[17] Cunningham, H. 1959. Digestion of starch and some of its degradation products by newborn pigs. Journal Animal Science. 18: 964–975.

[18] Makkink, C., Berntsen, J., Opdenksmp, M., Kemp, B. & Verstegen, M. (1994). Effect of dietary protein source on feed intake, growth, pancreatic enzyme, activities and yeyunal morphology in newly-weaned piglets. Journal of Animal Science. 72: 2843–2850.

[19] Moran, E. 2002. Comparative nutrition of fowls and swine. The gastrointestinal system. office for educational Practice. University of Guelph. Guelph, Ontario, Canadá. p. 253.

[20] Easter, R. 1995. Growth, body composition and nutrition. En: Memorias Curso de Lance. San José, Costa Rica. p. 17.

[21] Hester, N., Comstock, S., Thorum, S., Monaco, H., Pence, D., Woods, J. & Donovan, S. 2012. Intestinal and systemic immune development and response to vaccination are unaffected by dietary (1,3/1,6)-β-dGlucan supplementation in neonatal piglets. Clinical and Vaccine Immunology. 19:1499–508.

[22] Quiles, A. 2008. Características de la flora intestinal de lechón: Efecto de los probióticos. Edipor. 102:19–22.

[23] Pluske, J., Hopwood, D. & Hampson, D. 2003. Relación entre la microbiota intestinal, el pienso, la incidencia de diarreas y su influencia sobre la salud del lechón tras el destete. En memorias: XIX Curso de Especialización FEDNA. 23–24 de octubre.Madrid, España. p. 96.

[24] Reis de Souza, T., Guerrero, M., Aguilera, B. & Mariscal, G. 2005. Efecto de diferentes cereales sobre la morfología intestinal de lechones recién destetados. Revista Técnico Pecuaria en México. 43:309–321.

[25] Dirkzwager, A., Veldman, B. & Bikker, P. 2005 A nutritional approach for the prevention of Post Weaning Syndrome in piglets. Journal of Applied Animal Research. 54: 231–236.

[26] Le Dividich, J. & Sève, B. 2000. Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Domestic Animal Endocrinology. 19: 63–74.

[27] Easter, R. &. Ellis, M. 2000. Feeding the growing-finishing pig. In Memorias: Swine Nutrition Lance Coerce. San José, Costa Rica. p. 7.

[28] Campabadal, C. & Navarro, H. 1996. Alimentación de cerdos en desarrollo y engorde para la obtención de máximos rendimientos productivos. En: INA (Instituto Nacional de Aprendizaje). Capacitación en Alimentación Porcina. San José (CR): PIITTA CERDOS (Programa de Investigación y Transferencia Tecnológica en Cerdos). p. 59–79.

[29] Pond, W. & Maner, J. 1974. Producción de cerdos en climas templados y tropicales. Editorial Acribia. Zaragoza, España. p. 875.

[30] Stahly, T. 1993. Nutrition effects on lean growth, carcass composition. Fedstuffs. 65: 764–767.

[31] Hollis, G. 1996. Feeding management for all classes of swine. En: Memorias de LANCE, San José, Costa Rica. p. 22.

[32] Fernández, R. 2000. Necesidades nutricionales del lechón. Porcino Aula Veterinaria. 55: 39–50.

[33] Zert, P. 1979. Vademécum del Productor de Cerdo. Editorial Acribia. Zaragoza, España. p. 423.

[34] Schweigert, S. 1994. Contenido en nutrientes y valor nutritivo de la carne y los productos cárnicos. En.

[35] Ciencia de la Carne y los Productos Cárnicos. 2nd ed. en español. Editorial. Acribia, S.A. Zaragoza, España. p. 249–277.

[36] Lilly, D., Stillwell, R. 1965. Probiotics growth promoting factors produced by microorganisms. Science. 147: 747–748.

[37] Sanz, Y., Collado, M.C. & Dalmau, J. 2003. Probióticos: criterios de calidad y orientaciones para el consumo. Acta Pediátrica Española. 61: 476–482.

[38] FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canadá. Disponible en: . Consultado, enero 2019.

[39] Dunne, C., L. O’Mahony, L. Murphy, G. Thomton and D. Monissey et al., 2001. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr., 73: 386S392S.

[40] Verdenelli, M.C., F. Gheltä, S. Silvi, C. Orpianesi, C. Cecchini and A. Cresci, 2009. Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. Eur. J. Nutr. 48: 355363.

[41] Sekhon, B.S. and S. Jairath, 2010. Prebiotics, probiotics and synbiotics: An overview. J. Phann. Educ. Res., 1: 13–36.

[42] Jonsson, E. and P. Conway, 1992. Probiotics for Pigs. In: Probiotics: The Scientific Basis, Fuller, R. (Ed.). Chapman and Hall, London, pp: 260.

[43] Hentges, D.J., 1992. Gut Flora in Disease Resistance. In: Probiotics: The Scientific Basis, Fuller, R. (Ed.). Chapman and Hall, London, pp: 87.

[44] Mathew, A.G., S.E. Chattin, C.M. Robbins and D.A. Golden, 1998. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids and performance of weanling pigs. J. Anim. sci., 76: 21382145.

[45] Vasiljevic, T. & Shah, N. 2008. Probiotics - from Metchnikoff to bioactive. International Dairy Journal. 18: 714–728.

[46] Milián, G. 2009. Obtención de cultivos de Bacillus spp. y sus endosporas. Evaluación de su actividad probiótica en pollos (Gallus gallus domesticus). Tesis presentada para la opción de Doctor en Ciencias Veterinarias. La Habana, Cuba. p. 98.

[47] Bengmark, S. 1996. Econutrition and health maintenance. An new concept to prevent GI inflamation, ulceration and sepsis. Clin. Nutr. 15: 1–10.

[48] Shah, N. 2000. Some beneficial effects of probiotic bacteria. Bioscience Microflora 19: 99–106.

[49] Kiessling, G., Schneider, J. & Jahreis, G. 2002. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. European Journal of. Clinical Nutrition. 56: 843-849.

[50] Hara, H., Haga, S., Aoyama, Y. & Kiriyama, S. 1999. Short-chain fatty acids supress cholesterol syntesis in rats liver and intestine. Journal of Nutrition. 129: 942–948.

[51] Nakano, T., Shimuzu, M., Fukushima, M. & Yumiyoshi, S. 1999. Effects of a probiotic on the lipid metabolism of pullet hen as a colesterol-enriched diet. Biotechnology Biochemistry. 63: 1569–1575.

[52] González, B., Gómez, M. & Jiménez, Z. 2003. Bacteriocinas de probióticos. Salus cum prositum vitae. 4:Abril.

[53] Junio. Disponible en: . Consultado: Enero 2019.

[54] Ammor, M. & Mayo, B. 2007. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Science. 76: 138–146.

[55] Stanier, R., Ingraham, J., Wheelis, M. & Painter, P. 1992. Microbiología. Editorial Reverté, S.A. Barcelona, España. p. 195–197.

[56] Belguesmia, Y., Choiset, Y., Prévost, H., Dalgalarrondo, M., Chobert, J.M. & Drider, D. 2010. Partial purification and characterization of the mode of action of enterocin S37: A bacteriocin produced by Enterococcus faecalis S37 isolated from poultry feces. Journal of Environmental and Public Health. Volume. 2010: 1–8.

[57] Nomoto, K. 2000. Immunoregulatory functions of Probiotics. Bioscience and Microflora. 19:18.

[58] Seifert, H.S. & Gessler, F. (1996). Oral long-term administration of probiotic B. cereus an alternative to the prevention of enterotonaemia. Dtsch Tierarztl. Wochenschr. 103: 386–389.

[59] Guarner, F. 2002. El colon como órgano: hábitat de la flora bacteriana. Nutrición Hospitalaria. 2: 7–10.

[60] Lillehoj, H. 2007. Mejorando la inmunidad innata de aves a través de nuevas estrategias inmunológicas y genómicas. En: Memorias del XX Congreso Latinoamericano de Avicultura. 25-28 de septiembre. Porto Alegre, Brasil. p. 53–72.

[61] Vendrell, D., Balcázar, J.L, de Blas, I., Ruiz-Zarzuela, I., Gironés, O. & Muzquiz, J.L. 2008. Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comparative Immunology Microbiology Infectious. 31: 337–345.

[62] Perdigón, G.; Alvarez, S.; Nader de Macías, M.E. & Medici, M. 1990. The oral administration of lactic acid bacteria increase the mucosal immunity in response to enteropathogens. Journal Food Protection. 53: 404–410.

[63] González, B., Gómez, M. & Jiménez, Z. 2003. Bacteriocinas de probióticos. Salus cum prositum vitae. 4:AbrilJunio. Disponible en: . Consultado, Enero 2019.

[64] Fairbrother JM, Nadeau E, Gyles CL. 2005 Escherichia coli in postweaning diarrea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev.; 6:17–39.

[65] Chen XY, Woodward A, Zijlstra RT, Ganzle MG. 2014. Exopolysaccharides synthesised by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl Environ Microbiol;80:5752–5760.

[66] Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G. 2014. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem; 62:860–866.

[67] Francis DH. 2002. Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. J Swine Health Prod.;10:171–175.

[68] Huang CH, Qiao SY, Li DF, Piao XS, Ren JP. 2004. Effects of Lactobacillus on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian-Aust J Anim Sci.; 17:401–409.

[69] Wang A1, Yu H, Gao X, Li X, Qiao S. 2009. On the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie Van Leeuwenhoek.; 96:89–98.

[70] Chen XY, Woodward A, Zijlstra RT, Ganzle MG. 2014. Exopolysaccharides synthesised by Lactobacillus reuteri protect against enterotoxigeni Escherichia coli in piglets. Appl Environ Microbiol.; 80:5752–5760.

[71] Flores, L.; García, Y.; Proaño, F.; Caicedo, W 2015. Ciencia Y Agricultura. 12: 59–70.

[72] Kim, E., Hong, H., Hong, N., Choi, K., Hann, Y., Kangwan, N., Chao, Y. & Hahn, K. 2012. Concentrated Probiotics Improve Inflammatory Bowel Diseases Better that Commercial Concentration ofo Probiotics. Journal of Food and Drug Analysis. 20: 292–295.

[73] Noriega, L., Gueimonde, M., Sánchez, B., Margolles, A. & de los Reyes, C. 2004. Effect the adaptation to high bile salts concentrations on glycoside activity, sorvival ta low pH and cross-resistance to bile salts in Bifidobacterium. International Journal Food Microbiol. 94: 79–86.

[74] Patil, A.; Kumar, S.; Verma, A. & Baghel, R 2015. Liverstock Research International. 3:31–38.

[75] Davis, M.E., T. Parrott, D.C. Brown, B.Z. de Rodas, Z.B. Johnson, C.V. Maxwell and T. Rehberger, 2008. Effect of a Bacillus-based clirect-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J. An_im. sci., 86: 1459–1467.

[76] Alexopoulos, C., I.E. Georgoulakis, A. Tzivara, S.R. KHtas, A. Siochu and S.C. Ryriakis, 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J Anim. Physiol. Anim. Nutr., 88: 381–392.

[77] Reyes; I., Figueroa, J.L.; Cobos, M.A.; Sánchez, M.T.; Zamora, V. & Cordero, J.L. (2012). Probiótico (Enterococcus faecium) adicionado a dietas estándar y con baja proteína para cerdos. Archivos de Zootecnia. 61:589–598.

[78] Hansen, C.H.; Nielsen, D.S.; Kverka, M.; Zakostelska, Z.; Klimesova, K.; Hudcovic, T.; TlaskalovaHogenova, H.; Hansen, A.K. (2012) Patterns of early gut colonization shape future immune responses of the host. PLoS One. 7, 34043.3050.

[79] Siggers, R.H.; Siggers, J.; Boye, M.; Thymann, T.; Molbak, L.; Leser, T.; Jensen, B.B.; Sangild, P.T. (2008). Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J. Nutr. 138, 1437–1444.

[80] Liu, H.; Zhang, J.; Zhang, S.H.; Yang, F.J.; Thacker, P.A.; Zhang, G.L.; Qiao, S.Y.; Ma, X. (2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J. Agric. Food Chem. 62, 860–866.

[81] Fuller, R. (1989). Probiotics in man and animals. J. Appl. Bacteriol. 66, 365–378.

[82] Kanitz, E.; Manteuffel, G.; Otten, W. 1998. Effects of weaning and restraint stress on glucocorticoid receptor binding capacity in limbic areas of domestic pigs. Brain Res. 804, 311–315.

[83] Ross, G.R.; Gusils, C.; Oliszewski, R.; de Holgado, S.C.; Gonzalez, S.N. 2010 Effects of probiotic administration in swine. J. Biosci. Bioeng. 109, 545–549.

[84] Malloa, J.J.; Rioperezb, J.; Honrubiaa, P. 2010. The addition of Enterococcus faecium to diet improves piglet’s intestinal microbiota and performance. Livest. Sci. 26, 243–256.

[85] Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. 2010 Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livest. Sci. 129, 95–103.

[86] Malloa, J.J.; Rioperezb, J.; Honrubiaa, P. 2010. The addition of Enterococcus faecium to diet improves piglet’s intestinal microbiota and performance. Livest. Sci. 26, 243–256.

[87] Yu, H.F.; Wang, A.N.; Li, X.J.; Qiao, S.Y. 2008. Effect of viable Lactobacillus fermentum on the growth performance, nutrinent digestibility and immunity of weaned pigs. J. Anim. Feed Sci. 17, 61–69.

Download
HTML
Cite
Share
statistics

2194 Abstract Views

2657 PDF Downloads