KnE Engineering
ISSN: 2518-6841
The latest conference proceedings on all fields of engineering.
Predicting the Motion of an Intruder in a Vertically Vibrated 2D-Granular-Bed using Contact Points Approximation
Published date: Sep 05 2016
Journal Title: KnE Engineering
Issue title: Conference on Science and Engineering for Instrumentation, Environment and Renewable Energy
Pages:
Authors:
Abstract:
In this study, 2-dimensional Brazil nut effect experiments were setup. An intruder moves from its initial position at the middle-bottom of a container to its final position at the top of the granular bed. To predict the motion of the intruder, the number of contact points for each grain around the intruder was counted manually for grains in the first layer until the third layer. The average numbers of contact points from grains in each of 8 directions respected to the center of the intruder were calculated to determine the direction of total force acting on the intruder by grains in the first layer, in the first two-layers, and in the first three-layers.The result will be more acceptable using the data of two or three layers of grains in predicting intruder movement.
References:
[1] R. M. Nedderman, in Statics and Kinematics of Granular Materials, Cambridge University Press, 1992.
[2] A. P. J. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg, Reversing the Brazil-nut effect: competition between percolation and condensation, Phys Rev Lett, 90, p. 014302, (2003).
[3] T. N. Ain, in Evolusi Energi Potensial dan Kontaktopi Material Butiran Dua Dimensi dalam Kasus Kompaksi Penghambat Efek Kacang Brazil, Tesis MPFis, Institut Teknologi Bandung, Indonesia, 2015.
[4] A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen, Why the Brazil nuts are on top: size segregation of particulate matter by shaking, Phys Rev Lett, 58, 1038–1040, (1987).
[5] D. C. Hong, P. V. Quinn, and S. Luding, Reverse Brazil nut problem: competition between percolation and condensation, Phys Rev Lett, 86, 3423–3426, (2001).
[6] C.-C. Liao, S.-S. Hsiau, and C.-S. Wu, Combined Effects of Internal Friction and Bed Height on the Brazil-Nut Problem in a Shaker, Powder Technol, 253, 561–567, (2014).
[7] S. Viridi and S. N. Khotimah, Competition between Potential Energy Minimization and Number of Contact Points in Two-Dimension Granular Materials Exhibiting Brazil-Nut Effect, Proceeding of International Conference on Mathematics and Natural Sciences (ICMNS 2014), (2015).
[8] in S. Viridi, Novitrian, S. N. Khotimah, dan Widayani, Evolusi Energi Potensial dan Jumlah Titik Kontak Material Butiran Dua Dimensi dalam Kasus Efek Kacang Brazil, Prosiding Seminar Nasional Fisika (SNF 2014), , et al., Ed., 149–153, Serpong, Indonesia, 2014.
[9] J. Ellenberger, C. O. Vandu, and R. Krishna, Vibration-induced granular segregation in a pseudo-2D column: The (Reverse) Brazil Nut Effect, Powder Technol, 164, 168–173, (2006).
[10] C. N. Utama, D. N. Persia, R. R. Septiawan, S. N. Khotimah, and S. Viridi, Pemodelan empiris gerak apung intruder pada efek kacang Brasil 2-D dan pengamatannya dengan OpenCV (2013)., Prosiding the 1st Indonesian Student Conference on Science and Mathematics (ISCSM-1), edited by M. A. Martoprawiro et al., Bandung,
Indonesia, 24-25 June 2013, in press.
[11] H. A. C. Wibowo, in Studi Eksperimen Konveksi Granular Pada Efek Kacang Brazil Pseudo Dua-Dimensi dan Dua-Dimensi, Tesis MPFis, Institut Teknologi Bandung, Indonesia, 2015.
[12] S. Viridi and S. N. Khotimah, Novitrian, Widayani, L. Haris and D.P.P. Aji, Studying Brazil-Nut Effect History Line using Disk-Formed Objects, Scanner, and Web Browser, International Conference on Advances in Education Technology (ICAET 2014), 162–165, (2014)., Eds. Khairurrijal et al.
[13] D. Praja, T. N. Ain, H. A. Cahyo, S. N. Khotimah, and S. Viridi, 2015, Pengembangan Piranti Lunak Digitasi Berbasiskan Web untuk Mengamati Posisi Partikel Bed dan Intruder dalam Efek Kacang Brazil Dua-Dimensi, Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains 2015 (SNIPS 2015), Eds. D. Irwanto et al., Bandung, Indonesia, 8 dan 9 Juni 2015, pp. 5-8.
[14] H.-C. Chang and L.-C. Wang, A Simple Proof of Thue’s Theorem on Circle Packing, arXiv:1009.432.v1.
[15] P. J. Skrdla, Atomistic Description of Two-Dimensional Hexagonal Close-Packed Critical Nuclei Exhibiting Quantization of the Activation Energy Barrier, Cryst, Growth, 13, 1970–1977, (2013).