The current study was aimed to prepare and to characterize a renewable silica-carbon nanocomposite from rice straw ashes. It was purposed also to study the use of the produced nanocomposite as reinforcing material in producing a synthetic wood made of three axial blend of treated rice straw powder, phenolfrmaldehyde resin, and the nanocomposite. A simple preparation route of nanocomposite silica-carbon from rice straw was formulated containing three steps, namely pretreating of rice straw, preparing of ultra fine amorphous black silica, and composing silica-carbon nanocomposite. The nanocomposite product was characterized using XRD, XRF, FTIR and SEM methods. The characterization results comfirmed that the silica-carbon nanocomposite was succesfully prepared. The utilizing of the nanocomposite as reinforce material in producing synthetic woods was conducted through hot-pressing some three axial blend compositions of the pretreated rice straw powder, phenolformaldehyde resin, and the nanocomposite. The synthetic wood products were characterized their physical and mechanical properties. As a result, the addition of the nanocomposite could improve the properties of the synthetic wood products.
"
}
["accessStatus"]=>
int(0)
["authors"]=>
array(1) {
[0]=>
object(stdClass)#15669 (20) {
["affiliation"]=>
object(stdClass)#15670 (1) {
["en_US"]=>
string(0) ""
}
["email"]=>
string(26) "karyasa.undiksha@gmail.com"
["familyName"]=>
object(stdClass)#15668 (1) {
["en_US"]=>
string(7) "Karyasa"
}
["givenName"]=>
object(stdClass)#15667 (1) {
["en_US"]=>
string(7) "I Wayan"
}
["id"]=>
int(1439)
["includeInBrowse"]=>
bool(true)
["orcid"]=>
string(0) ""
["orcidAccessDenied"]=>
NULL
["orcidAccessExpiresOn"]=>
NULL
["orcidAccessScope"]=>
NULL
["orcidAccessToken"]=>
NULL
["orcidEmailToken"]=>
NULL
["orcidRefreshToken"]=>
NULL
["orcidSandbox"]=>
NULL
["orcidWorkPutCode"]=>
NULL
["preferredPublicName"]=>
object(stdClass)#15666 (1) {
["en_US"]=>
string(0) ""
}
["publicationId"]=>
int(443)
["rorId"]=>
NULL
["seq"]=>
int(47)
["userGroupId"]=>
int(133)
}
}
["authorsString"]=>
string(15) "I Wayan Karyasa"
["authorsStringShort"]=>
string(7) "Karyasa"
["categoryIds"]=>
array(0) {
}
["citations"]=>
array(15) {
[0]=>
string(207) "I. W. Karyasa, Meta-analisis on renewable silica based materials from rice husk and mapping on high siliconeous tropical biomasses, Proceeding of National Seminar on Mathematics and Natural Sciences, (2012)."
[1]=>
string(124) "K. S. Kim and H. C. Choi, Characteristics of adsorption of rice-hull activated carbon, Water Sci Technol, 38, 4–5, (1998)."
[2]=>
string(120) "C. Real, M. D. Alcala, and J. M. Criado, Preparation of silica from rice husks, J Am Ceram Soc, 79, 2012–2016, (1996)."
[3]=>
string(181) "N. Thundaij and A. Nuntiya, Preparation of nanosilica powder from rice husk ash by precipating method, Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 35, 206–2011, (2008)."
[4]=>
string(164) "S. Jankong and K. Srikulkit, Preparation of polypropylene/hydrophobic silica nanocomposite, Journal of Metals, materials and Minerals, 18, no. 2, 143–146, (2008)."
[5]=>
string(171) "K. Jindal, L. F. Francis, and A. V. McCormick, Stress development in nanocomposite silica coating, The 14th International Coating Science and Technology Symposium, (2008)."
[6]=>
string(184) "Q. Hu, R. Kou, J. Pang, T. L. Ward, M. Cai, Z. Yang, Y. Lu, and J. Tang, Mesoporous carbon/silica nanocomposite through multi-component assembly, Chem Commun (Camb), 601–603, (2007)."
[7]=>
string(72) "M. Himmelhelber, K. Steiner, and W. Kull, U. S. Patent 2,923,030 (1960)."
[8]=>
string(65) "R. M. Knudson and M. J. Gnatowski, U. S. Patent 4,879,083 (1989)."
[9]=>
string(44) "S. Nishibori, U. S. Patent 2,725,939 (1998)."
[10]=>
string(50) "B. Nilsson, U. S. Patent US2012/0217671 A1 (2012)."
[11]=>
string(45) "L. Hammarberg, U. S. Patent 4,514,258 (1985)."
[12]=>
string(67) "B. J. Sullivan and L. J. Du Mouchel, U. S. Patent 6,143,220 (2000)."
[13]=>
string(44) "D. Ward, U. S. Patent US7,699,951 B2 (2010)."
[14]=>
string(69) "R. W. Martin, in The Chemistry of Phenolic Resins, John Willey, 1999."
}
["citationsRaw"]=>
string(1757) "[1] I. W. Karyasa, Meta-analisis on renewable silica based materials from rice husk and mapping on high siliconeous tropical biomasses, Proceeding of National Seminar on Mathematics and Natural Sciences, (2012).
[2] K. S. Kim and H. C. Choi, Characteristics of adsorption of rice-hull activated carbon, Water Sci Technol, 38, 4–5, (1998).
[3] C. Real, M. D. Alcala, and J. M. Criado, Preparation of silica from rice husks, J Am Ceram Soc, 79, 2012–2016, (1996).
[4] N. Thundaij and A. Nuntiya, Preparation of nanosilica powder from rice husk ash by precipating method, Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 35, 206–2011, (2008).
[5] S. Jankong and K. Srikulkit, Preparation of polypropylene/hydrophobic silica nanocomposite, Journal of Metals, materials and Minerals, 18, no. 2, 143–146, (2008).
[6] K. Jindal, L. F. Francis, and A. V. McCormick, Stress development in nanocomposite silica coating, The 14th International Coating Science and Technology Symposium, (2008).
[7] Q. Hu, R. Kou, J. Pang, T. L. Ward, M. Cai, Z. Yang, Y. Lu, and J. Tang, Mesoporous carbon/silica nanocomposite through multi-component assembly, Chem Commun (Camb), 601–603, (2007).
[8] M. Himmelhelber, K. Steiner, and W. Kull, U. S. Patent 2,923,030 (1960).
[9] R. M. Knudson and M. J. Gnatowski, U. S. Patent 4,879,083 (1989).
[10] S. Nishibori, U. S. Patent 2,725,939 (1998).
[11] B. Nilsson, U. S. Patent US2012/0217671 A1 (2012).
[12] L. Hammarberg, U. S. Patent 4,514,258 (1985).
[13] B. J. Sullivan and L. J. Du Mouchel, U. S. Patent 6,143,220 (2000).
[14] D. Ward, U. S. Patent US7,699,951 B2 (2010).
[15] R. W. Martin, in The Chemistry of Phenolic Resins, John Willey, 1999."
["copyrightHolder"]=>
object(stdClass)#15665 (1) {
["en_US"]=>
string(15) "KnE Engineering"
}
["copyrightYear"]=>
int(2016)
["coverImage"]=>
object(stdClass)#15663 (1) {
["en_US"]=>
object(stdClass)#15664 (3) {
["uploadName"]=>
string(27) "cover_article_522_en_US.jpg"
["dateUploaded"]=>
string(19) "2025-04-18 14:49:42"
["altText"]=>
string(0) ""
}
}
["coverage"]=>
object(stdClass)#15662 (1) {
["en_US"]=>
string(0) ""
}
["crossref::batchId"]=>
NULL
["crossref::failedMsg"]=>
NULL
["crossref::registeredDoi"]=>
NULL
["crossref::status"]=>
NULL
["datacite::registeredDoi"]=>
NULL
["datacite::status"]=>
NULL
["datePublished"]=>
string(10) "2016-09-05"
["disciplines"]=>
object(stdClass)#15657 (1) {
["en_US"]=>
array(0) {
}
}
["doaj::status"]=>
NULL
["doiSuffix"]=>
NULL
["fullTitle"]=>
object(stdClass)#15661 (1) {
["en_US"]=>
string(107) "Renewable Silica-Carbon Nanocomposite and Its Use for Reinforcing Synthetic Wood Made of Rice Straw Powders"
}
["galleys"]=>
array(2) {
[0]=>
object(stdClass)#15660 (23) {
["crossref::batchId"]=>
NULL
["crossref::failedMsg"]=>
NULL
["crossref::registeredDoi"]=>
NULL
["crossref::status"]=>
NULL
["datacite::registeredDoi"]=>
NULL
["datacite::status"]=>
NULL
["dependentFiles"]=>
array(0) {
}
["doaj::status"]=>
NULL
["doiSuffix"]=>
NULL
["file"]=>
object(stdClass)#15659 (5) {
["fileName"]=>
string(39) "522-Article Text-3313-3-10-20160920.pdf"
["id"]=>
int(3313)
["revision"]=>
int(3)
["fileStage"]=>
int(10)
["genreId"]=>
int(37)
}
["fileId"]=>
int(3313)
["id"]=>
int(1610)
["isApproved"]=>
bool(true)
["label"]=>
string(3) "PDF"
["locale"]=>
string(5) "en_US"
["medra::registeredDoi"]=>
NULL
["medra::status"]=>
NULL
["pub-id::doi"]=>
NULL
["pub-id::publisher-id"]=>
NULL
["publicationId"]=>
int(443)
["seq"]=>
int(0)
["urlPublished"]=>
string(85) "https://knepublishing.com/index.php/KnE-Engineering/article/view/522/version/443/1610"
["urlRemote"]=>
NULL
}
[1]=>
object(stdClass)#15658 (23) {
["crossref::batchId"]=>
NULL
["crossref::failedMsg"]=>
NULL
["crossref::registeredDoi"]=>
NULL
["crossref::status"]=>
NULL
["datacite::registeredDoi"]=>
NULL
["datacite::status"]=>
NULL
["dependentFiles"]=>
array(3) {
[0]=>
object(stdClass)#15655 (13) {
["id"]=>
int(3315)
["fileName"]=>
string(32) "522-Image-3315-1-17-20160905.jpg"
["revision"]=>
int(1)
["fileStage"]=>
int(17)
["genreId"]=>
int(46)
["caption"]=>
NULL
["credit"]=>
NULL
["copyrightOwner"]=>
NULL
["terms"]=>
NULL
["width"]=>
int(800)
["height"]=>
int(484)
["physicalWidth"]=>
string(3) "2.7"
["physicalHeight"]=>
string(3) "1.6"
}
[1]=>
object(stdClass)#15656 (13) {
["id"]=>
int(3316)
["fileName"]=>
string(32) "522-Image-3316-1-17-20160905.jpg"
["revision"]=>
int(1)
["fileStage"]=>
int(17)
["genreId"]=>
int(46)
["caption"]=>
NULL
["credit"]=>
NULL
["copyrightOwner"]=>
NULL
["terms"]=>
NULL
["width"]=>
int(800)
["height"]=>
int(318)
["physicalWidth"]=>
string(3) "2.7"
["physicalHeight"]=>
string(3) "1.1"
}
[2]=>
object(stdClass)#15654 (13) {
["id"]=>
int(3317)
["fileName"]=>
string(32) "522-Image-3317-1-17-20160905.jpg"
["revision"]=>
int(1)
["fileStage"]=>
int(17)
["genreId"]=>
int(46)
["caption"]=>
NULL
["credit"]=>
NULL
["copyrightOwner"]=>
NULL
["terms"]=>
NULL
["width"]=>
int(800)
["height"]=>
int(326)
["physicalWidth"]=>
string(3) "2.7"
["physicalHeight"]=>
string(3) "1.1"
}
}
["doaj::status"]=>
NULL
["doiSuffix"]=>
NULL
["file"]=>
object(stdClass)#15653 (5) {
["fileName"]=>
string(39) "522-Article Text-3314-4-10-20160920.xml"
["id"]=>
int(3314)
["revision"]=>
int(4)
["fileStage"]=>
int(10)
["genreId"]=>
int(37)
}
["fileId"]=>
int(3314)
["id"]=>
int(1611)
["isApproved"]=>
bool(true)
["label"]=>
string(4) "HTML"
["locale"]=>
string(5) "en_US"
["medra::registeredDoi"]=>
NULL
["medra::status"]=>
NULL
["pub-id::doi"]=>
NULL
["pub-id::publisher-id"]=>
NULL
["publicationId"]=>
int(443)
["seq"]=>
int(1)
["urlPublished"]=>
string(85) "https://knepublishing.com/index.php/KnE-Engineering/article/view/522/version/443/1611"
["urlRemote"]=>
NULL
}
}
["hideAuthor"]=>
NULL
["id"]=>
int(443)
["issueId"]=>
int(40)
["keywords"]=>
object(stdClass)#15652 (1) {
["en_US"]=>
array(0) {
}
}
["languages"]=>
object(stdClass)#15651 (1) {
["en_US"]=>
array(1) {
[0]=>
string(0) ""
}
}
["lastModified"]=>
string(19) "2020-08-12 05:26:04"
["licenseUrl"]=>
NULL
["locale"]=>
string(5) "en_US"
["medra::registeredDoi"]=>
NULL
["medra::status"]=>
NULL
["pages"]=>
NULL
["prefix"]=>
object(stdClass)#15650 (1) {
["en_US"]=>
string(0) ""
}
["primaryContactId"]=>
int(1439)
["pub-id::doi"]=>
string(21) "10.18502/keg.v1i1.522"
["pub-id::publisher-id"]=>
NULL
["rights"]=>
object(stdClass)#15649 (1) {
["en_US"]=>
string(0) ""
}
["sectionId"]=>
int(32)
["seq"]=>
int(47)
["source"]=>
object(stdClass)#15645 (1) {
["en_US"]=>
string(0) ""
}
["status"]=>
int(3)
["subjects"]=>
object(stdClass)#15648 (1) {
["en_US"]=>
array(0) {
}
}
["submissionId"]=>
int(522)
["subtitle"]=>
object(stdClass)#15647 (1) {
["en_US"]=>
string(0) ""
}
["supportingAgencies"]=>
object(stdClass)#15646 (1) {
["en_US"]=>
array(0) {
}
}
["title"]=>
object(stdClass)#15644 (1) {
["en_US"]=>
string(107) "Renewable Silica-Carbon Nanocomposite and Its Use for Reinforcing Synthetic Wood Made of Rice Straw Powders"
}
["type"]=>
object(stdClass)#15643 (1) {
["en_US"]=>
string(0) ""
}
["urlPath"]=>
NULL
["urlPublished"]=>
string(80) "https://knepublishing.com/index.php/KnE-Engineering/article/view/522/version/443"
["version"]=>
int(1)
}
The current study was aimed to prepare and to characterize a renewable silica-carbon nanocomposite from rice straw ashes. It was purposed also to study the use of the produced nanocomposite as reinforcing material in producing a synthetic wood made of three axial blend of treated rice straw powder, phenolfrmaldehyde resin, and the nanocomposite. A simple preparation route of nanocomposite silica-carbon from rice straw was formulated containing three steps, namely pretreating of rice straw, preparing of ultra fine amorphous black silica, and composing silica-carbon nanocomposite. The nanocomposite product was characterized using XRD, XRF, FTIR and SEM methods. The characterization results comfirmed that the silica-carbon nanocomposite was succesfully prepared. The utilizing of the nanocomposite as reinforce material in producing synthetic woods was conducted through hot-pressing some three axial blend compositions of the pretreated rice straw powder, phenolformaldehyde resin, and the nanocomposite. The synthetic wood products were characterized their physical and mechanical properties. As a result, the addition of the nanocomposite could improve the properties of the synthetic wood products.
References:
[1] I. W. Karyasa, Meta-analisis on renewable silica based materials from rice husk and mapping on high siliconeous tropical biomasses, Proceeding of National Seminar on Mathematics and Natural Sciences, (2012).
[2] K. S. Kim and H. C. Choi, Characteristics of adsorption of rice-hull activated carbon, Water Sci Technol, 38, 4–5, (1998).
[3] C. Real, M. D. Alcala, and J. M. Criado, Preparation of silica from rice husks, J Am Ceram Soc, 79, 2012–2016, (1996).
[4] N. Thundaij and A. Nuntiya, Preparation of nanosilica powder from rice husk ash by precipating method, Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 35, 206–2011, (2008).
[5] S. Jankong and K. Srikulkit, Preparation of polypropylene/hydrophobic silica nanocomposite, Journal of Metals, materials and Minerals, 18, no. 2, 143–146, (2008).
[6] K. Jindal, L. F. Francis, and A. V. McCormick, Stress development in nanocomposite silica coating, The 14th International Coating Science and Technology Symposium, (2008).
[7] Q. Hu, R. Kou, J. Pang, T. L. Ward, M. Cai, Z. Yang, Y. Lu, and J. Tang, Mesoporous carbon/silica nanocomposite through multi-component assembly, Chem Commun (Camb), 601–603, (2007).
[8] M. Himmelhelber, K. Steiner, and W. Kull, U. S. Patent 2,923,030 (1960).
[9] R. M. Knudson and M. J. Gnatowski, U. S. Patent 4,879,083 (1989).
[10] S. Nishibori, U. S. Patent 2,725,939 (1998).
[11] B. Nilsson, U. S. Patent US2012/0217671 A1 (2012).
[12] L. Hammarberg, U. S. Patent 4,514,258 (1985).
[13] B. J. Sullivan and L. J. Du Mouchel, U. S. Patent 6,143,220 (2000).
[14] D. Ward, U. S. Patent US7,699,951 B2 (2010).
[15] R. W. Martin, in The Chemistry of Phenolic Resins, John Willey, 1999.