KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Effect of Co-Ti Substitution on Magnetic Properties of Nanocrystalline BaFe12O19

Published date: Sep 05 2016

Journal Title: KnE Engineering

Issue title: Conference on Science and Engineering for Instrumentation, Environment and Renewable Energy

Pages:

DOI: 10.18502/keg.v1i1.506

Authors:

Erfan Handoko - erfan@unj.ac.id

Abstract:

The synthesis of nanocrystalline BaFe12-2xCoxTixO19 with variations of x (x = 0, 1, 2, and 3) have been investigated. The formation of polycrystalline samples that the cationic of Co2+ and Ti4+ in Co-Ti substituted Fe in BaFe12O19 ferrites structure were prepared by solid state reaction method. The crystal structure, microstructure, and magnetic properties were characterized using powder X-ray diffraction, scanning electron microscope (SEM) and permagraph meter, respectively. The results show that the nanocrystalline BaFe12-2xCoxTixO19 has single phase with polycrystalline structure, the grain size decrease by doping, the coercivity (Hc) and saturation magnetization (Ms) decrease with increasing Co-Ti substitutions. 

References:

[1] H. Sozeri, J Alloys Compd, 486, 809–814, (2009).


[2] U. Topal and H. I. Bakan, J Eur Ceram Soc, 30, 3167–3171, (2010).


[3] P. E. Garcia-Casillas, A. M. Beesley, D. Buenoc, J. A. Matutes-Aquino, and C. A. Martinez, Remanence properties of barium hexaferrite, J Alloys Compd, 369, 185– 189, (2004).


[4] J. Dho, E. K. Lee, J. Y. Park, and N. H. Hur, J Magn Magn Mater, 285, 164–168, (2005).


[5] M. M. Rashad, M. Radwan, and M. M. Hessien, Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrite, J Alloys Compd, 453, 304–308, (2008).


[6] U. Topala, H. Ozkanb, and H. Sozeri, J Magn Magn Mater, 284, 416–422, (2004).


[7] P. Kerschla, R. Gr. ossingerb, C. Kussbachb, R. Sato-Turtellib, K. H. M. Ullera, and L. Schultza, J Magn Magn Mater, 242–245, 1468–1470, (2002).


[8] K. S. Martirosyan, E. Galstyan, S. M. Hossain, Y.-J. Wang, and D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties, Mater Sci Eng B, 176, 8–13, (2011).


[9] P. Hernfindez, C. de Francisco, J. M. Mufioz, J. Ifiiguez, L. Torres, and M. Zazo, J Magn Magn Mater, 157/158, 123–124, (1996).


[10] V. N. Dhage, M. L. Mane, A. P. Keche, C.T. Birajdar, and K. M. Jadhav, Physica B, 406, 789–793, (2011).


[11] P. A. Marino-Castellanos, J. C. Somarriba-Jarque, and J. Anglada-Rivera, Physica B, 362, 95–102, (2005).


[12] A. Gonzalez-Angeles, G. Mendoza-Suarez, A. Gruskova, I. Toth, V. J. Warik, J. I. Escalante-Garca, and M. Papanova, J Magn Magn Mater, 270, 77–83, (2004).


[13] P. A. Marino-Castellanos, J. Anglada-Rivera, A. Cruz-Fuentes, and R. Lora-Serrano, J Magn Magn Mater, 280, 214–220, (2004).


[14] A. Gruskova, J. Slama, R. Dosoudil, D. Kevicka, V. Jancarik, and I. Toth, Influence of Co–Ti substitution on coercivity in Ba ferrites, J Magn Magn Mater, 242–245, 423–425, (2002).


[15] A. Ghasemia, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, J Magn Magn Mater, 302, 429–435, (2006).


[16] J. Qiu, H. Shen, and M. Gu, Powder Technol, 154, 116–119, (2005).

Download
HTML
Cite
Share
statistics

438 Abstract Views

192 PDF Downloads