KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

First Principle Calculation of Electronic, Optical Properties and Photocatalytic Potential of CuO Surfaces

Published date: Sep 05 2016

Journal Title: KnE Engineering

Issue title: Conference on Science and Engineering for Instrumentation, Environment and Renewable Energy

DOI: 10.18502/keg.v1i1.504

Authors:
Abstract:

We have performed DFT calculations of electronic structure, optical properties and photocatalytic potential of the low-index surfaces of CuO. Photocatalytic reaction on the surface of semiconductor requires the appropriate band edge of the semiconductor surface to drive redox reactions. The calculation begins with the electronic structure of bulk system; it aims to determine realistic input parameters and band gap prediction. CuO is an antiferromagnetic material with strong electronic correlations, so that we have applied DFT + U calculation with spin polarized approach, beside it, we also have used GW approximation to get band gap correction. Based on the input parameters obtained, then we calculate surface energy, work function and band edge of the surfaces based on a framework developed by Bendavid et al (J. Phys. Chem. B, 117, 15750-15760) and then they are aligned with redox potential needed for water splitting and CO2 reduction. Based on the calculations result can be concluded that not all of low-index CuO have appropriate band edge to push reaction of water splitting and CO2 reduction, only the surface CuO(111) and CuO(011) which meets the required band edge. Fortunately, based on the formation energy, CuO(111) and CuO(011) is the most stable surface. The last we calculate electronic structure and optical properties (dielectric function) of low-index surface of CuO, in order to determine the surface state of the most stable surface of CuO.

References:

[1] L. I. Bendavid and E. A. Carter, First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces, J Phys Chem B, 117, 15750–15760, (2013).


[2] J. P. Perdew and M. Levy, M. Physical content of the exact kohn-sham orbital energies: band gaps and derivative discontinuities, Phys Rev Lett, 51, 1884–1887, (1983).


[3] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. MartinSamos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J Phys Condens Matter, 21, p. 395502, (2009).


[4] A. Marini, C. Hogan, M. Grüning, and D. Varsano, yambo: an ab initio tool for excited state calculations, Comput Phys Commun, 180, 1392–1403, (2009).


[5] J. Hu, D. Li, J. G. Lu, and R. Wu, Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires, J Phys Chem C, 114, 17120–17126, (2010).


[6] F. Marabelli, G. B. Parravicini, and F. Salghetti-Drioli, Optical gap of CuO, Phys Rev B Condens Matter, 52, 1433–1436, (1995).


[7] J. B. Forsyth, P. J. Brown, and B. M. Wanklyn, Magnetism in cupric oxide, J Phys C Solid State Phys, 21, 2917–2929, (2000).


[8] B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Magnetic neutron scattering study of single-crystal cupric oxide, Phys Rev B Condens Matter, 39, 4343– 4349, (1989).


[9] C. Hogan and R. Del Sole, Optical properties of the GaAs(001)-c(4 × 4) surface: direct analysis of the surface dielectric function, Phys Status Solidi, 242, 3040–3046, (2005).

Download
HTML
Cite
Share
Crossref Cited-by logo

6

Faozan Ahmad, Mohammad Kemal Agusta, Ryo Maezono, Hermawan Kresno Dipojono (2020)

DFT  +  U study of H2O adsorption and dissociation on stoichiometric and nonstoichiometric CuO(1 1 1) surfaces, Journal of Physics: Condensed Matter

Volume: 32, Issue: 4, First Page: 045001

10.1088/1361-648X/ab4b34

Nigussie Alebachew, H. C. Ananda Murthy, Bedasa Abdisa Gonfa, Karel G. von Eschwege, Ernst H. G. Langner, Elizabeth Coetsee, Taye B. Demissie (2023)

Nanocomposites with ZrO2@S-Doped g-C3N4 as an Enhanced Binder-Free Sensor: Synthesis and Characterization, ACS Omega

Volume: 8, Issue: 15, First Page: 13775

10.1021/acsomega.2c08174

Nigussie Alebachew, H. C. Ananda Murthy, Bedasa Abdisa, Taye B. Demissie (2023)

Important Features of Nanomaterials for Environmental Remediation,

First Page: 1

10.1007/978-3-031-30558-0_1

Lakhdar Benahmedi, Anissa Besbes, Radouan Djelti, Samia Moulebhar (2025)

DFT and SCAPS-1D simulation of single-layer and bilayer perovskite solar cells: Ca3BiI3 and Sr3BiI3 , Semiconductor Science and Technology

Volume: 40, Issue: 2, First Page: 025001

10.1088/1361-6641/ada17e

Christian A. Celaya, Cornelio Delesma, S. Torres-Arellano, P.J. Sebastian, Jesús Muñiz (2021)

Understanding CO2 conversion into hydrocarbons via a photoreductive process supported on the Cu2O(1 0 0), (1 1 0) and (1 1 1) surface facets: A first principles study, Fuel

Volume: 306, First Page: 121643

10.1016/j.fuel.2021.121643

Lakhdar Benahmedi, Anissa Besbes, Radouan Djelti, Samia Moulebhar, Ali Aissani, Sidahmed Bendehiba (2025)

DFT and SCAPS-1D Modeling of Ba3BiI3 Perovskite Solar Cells: Exploring the Influence of HTL and ETL Materials, Journal of Inorganic and Organometallic Polymers and Materials

10.1007/s10904-025-03686-8