KnE Engineering
ISSN: 2518-6841
The latest conference proceedings on all fields of engineering.
Some Properties of Representation of Quaternion Group
Published date: Apr 16 2019
Journal Title: KnE Engineering
Issue title: International Conference on Basic Sciences and Its Applications (ICBSA-2018)
Pages: 266–274
Authors:
Abstract:
The quaternions are a number system in the form
References:
[1] Waerden, B. L. (1976). Hamilton’s Discovery of Quaternions. Mathematical Association of America. 49(5), 227-234.
[2] Dummit, D. S. and Foote R. M. (2004). Abstract Algebra. Third Edition, John Wiley & Sons, New York.
[3] Hall, M. (2004). The Theory of Groups. The Macmillan Company, New York.
[4] Burrow, M. (1993). Representation Theory of Finite Group. Academic Press Inc., New York.
[5] Tarnauceanu, M. (2013). A Characterization of The Quaternion Group. Mathematics Subject Classification. 21(1), 209-214.
[6] Nymann, D. S. (1967). Dedekind Groups. Pacific Journal of Mathematics, 21(1), 153- 160.
[7] Rotman, J. J. (1999). An Introduction to The Theory of Groups. Fourth Edition, Springer-Verlag, New York.
[8] Herstein, I. N. (1975). Topics in Algebra. Second Edition, John Wiley & Sons, New York.
[9] Hempel, C. E. (2000). Metacyclic Groups. Communications in Algebra, 28(8), 3865- 3897.