KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Some Properties of Representation of Quaternion Group

Published date: Apr 16 2019

Journal Title: KnE Engineering

Issue title: International Conference on Basic Sciences and Its Applications (ICBSA-2018)

Pages: 266–274

DOI: 10.18502/keg.v1i2.4451

Authors:
Abstract:

The quaternions are a number system in the form

References:

[1] Waerden, B. L. (1976). Hamilton’s Discovery of Quaternions. Mathematical Association of America. 49(5), 227-234.


[2] Dummit, D. S. and Foote R. M. (2004). Abstract Algebra. Third Edition, John Wiley & Sons, New York.


[3] Hall, M. (2004). The Theory of Groups. The Macmillan Company, New York.


[4] Burrow, M. (1993). Representation Theory of Finite Group. Academic Press Inc., New York.


[5] Tarnauceanu, M. (2013). A Characterization of The Quaternion Group. Mathematics Subject Classification. 21(1), 209-214.


[6] Nymann, D. S. (1967). Dedekind Groups. Pacific Journal of Mathematics, 21(1), 153- 160.


[7] Rotman, J. J. (1999). An Introduction to The Theory of Groups. Fourth Edition, Springer-Verlag, New York.


[8] Herstein, I. N. (1975). Topics in Algebra. Second Edition, John Wiley & Sons, New York.


[9] Hempel, C. E. (2000). Metacyclic Groups. Communications in Algebra, 28(8), 3865- 3897.

Download
HTML
Cite
Share
statistics

8693 Abstract Views

2266 PDF Downloads