KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Bayesian Estimation of Spatial Regression Models with Skew-normally Covariates Measured with Errors: Evidence from Monte Carlo Simulations

Published date:Apr 16 2019

Journal Title: KnE Engineering

Issue title: International Conference on Basic Sciences and Its Applications (ICBSA-2018)

Pages:204–214

DOI: 10.18502/keg.v1i2.4445

Authors:
Abstract:

Spatial data are susceptible to covariates measured with errors. However, the errorprone covariates and the random errors are usually assumed to be symmetrically, normally distribution. The purpose of this paper is to analyze Bayesian inference of spatial regression models with a covariate measured with Skew-normal error by way of Monte Carlo simulation. We consider the spatial regression models with different degree of spatial correlation in the covariate of interest and measurement error variance. The simulation examines the performance of Bayesian estimators in the case of (i) Naive models without measurement error correction; (ii) Normal distribution for the error-prone covariate and random errors; (iii) Skew-normal distribution (SN) for the error-prone covariate and normal distribution for random errors. We use the relative bias (RelBias) and Root Mean Squared Error (RMSE) as valuation criteria. The main result is that the Skew-normal prior estimator outperform the normal, symmetrical prior distribution and the Naive models without measurement error correction.

 

 

Keywords: Spatial regression, measurement error, Bayesian analysis, Skew-normal distribution

References:

[1] LeSage, J. P. (1999). The Theory and Practice of Spatial Econometrics. Department of Economics. University of Toledo.


[2] Anselin, L. (2007). Spatial Econometrics, in A Companion to Theoretical Econometrics. Badi H. Baltagi, Ed., pp. 310-330, John Wiley & Sons. New York.


[3] Waller, L. A, Gotway C. A. (2004). Applied Spatial Statistics for Public Health Data, Vol. 368. John Wiley & Sons: Hoboken, New Jersey, U.S.A.


[4] Li Y. et al. (2009). Spatial linear mixed models with covariate measurement errors, Stat. Sinica 19(3), 1077-1093.


[5] Huque M. H. et al. (2014). On the impact of covariate measurement error on spatial regression modelling, Environmetrics. 25, 560-570. [doi: 10.1002/env.2305].


[6] Huque M. H. et al. (2016). Spatial regression with covariate measurement error: A semiparametric approach. Biometrics. 72(3), 678-86. [doi: 10.1111/biom.12474].


[7] Arellano-Valle R. B., et al. (2005). Skew-normal measurement error models. J. Multivariate Anal., 96, 265-281. [doi: 10.1016/j.jmva.2004.11.002].


[8] Kheradmandi A. et al. (2015). Estimation in skew-normal linear mixed measurement error models. J. Multivariate Anal. 136, 1-11. [doi: 10.1016/j.jmva.2014.12.007].


[9] Muff S. et al. (2015). Bayesian analysis of measurement error models using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. C. Appl. Stat. 64(2), 231-252.


[10] Hossain S. et al. (2009). Bayesian adjustment for covariate measurement errors: A flexible parametric approach, Statist. Med. 28, 1580–1600. [doi: 10.1002/sim.3552].


[11] Azzalini A. (1985). A class of distributions which includes the normal ones Scand. J. Stat. 12(2), 17-18.


[12] Plant, R.E. (2012). Spatial Data Analysis in Ecology and Agriculture Using R. CRC Press. New York.


[13] LeSage, J. P. (2014). Spatial econometric panel data model specification: A Bayesian approach, Spat. Statist. 9, 122-145. [http://dx.doi.org/10.1016/j.spasta.2014.02.002].


[14] Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., and Rubin, D.B. (2014). Bayesian Data Analysis, Chapman & Hall/CRC, New York, NY.


[15] Su Y S. et al. (2015). R2jags: A package for running jags from R, R package version 0.5-7.


[16] Spiegelhalter D. J. et al. (2014). The deviance information criterion: 12 years on, J. R. Stat. Soc. Ser. B. Stat. Methodol. 76, 485-493.

Cited by
?
WET BALL MILLING APPLIED TO PRODUCTION OF COMPOSITES AND COATINGS BASED ON TI, W, AND NB CARBIDES
M. Eryomina et al., POWDERS, 2023
INFLUENCE OF MECHANOACTIVATION CONDITIONS AND SURFACTANT ADDITION ON PHASE COMPOSITION AND PROPERTIES OF TITANIUM CARBOHYDRIDE—COPPER COMPOSITES
M. A. Eremina et al., PHYSICS OF METALS AND METALLOGRAPHY, 2020
MICROSTRUCTURE CHARACTERIZATION AND PROPERTIES OF TI CARBOHYDRIDE/CU–TI/GNP NANOCOMPOSITES PREPARED BY WET BALL MILLING AND SUBSEQUENT MAGNETIC PULSED COMPACTION
M. Eryomina et al., METALS AND MATERIALS INTERNATIONAL, 2019
Recommendations
CRYSTAL STRUCTURE OF MARTENSITE AND ORIENTATION RELATIONSHIPS DURING THERMOELASTIC MARTENSITIC TRANSFORMATIONS IN NI-MN-BASED ALLOYS
E. S. Belosludtseva et al., KNE ENGINEERING, 2019
COMPARATIVE ANALYSIS FOR WEB APPLICATIONS BASED ON REST SERVICES: MEAN STACK AND JAVA EE STACK
J. S. Heredia et al., KNE ENGINEERING, 2018
NEPHELOMETRIC METHOD FOR DETERMINATION OF GROWTH PARAMETERS OF CHLORELLA CULTURE
A. Mitishev et al., KNE ENGINEERING, 2018
USABILITY EVALUATION OF A WEB ACADEMIC SOFTWARE DEVELOPED TO MEASURE
Menes Camejo et al., KNE ENGINEERING, 2018
NATURAL ZEOLITS AND ITS MODIFICATIONS WITH PROTONS AND COPPER AS THE CATALYST FOR ESTERIFICATION OF ETHANOL WITH ACETIC ACID
Syukri et al., KNE ENGINEERING, 2019
Powered by
Download
HTML
Cite
Share
statistics

435 Abstract Views

383 PDF Downloads