KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

The Formation of the Structure and Tribological Properties of Composite Bronzes Reinforced with Steel Dendrites

Published date:Apr 15 2019

Journal Title: KnE Engineering

Issue title: XIX International scientific-technical conference “The Ural school-seminar of metal scientists-young researchers”

Pages:176–183

DOI: 10.18502/keg.v1i1.4407

Authors:
Abstract:

The possibility of creating of composite bronzes reinforced with steel dendrites from martensitic, austenitic and ferritic steels was considered. Compared to the BrO10 bronze widely used in the sliding friction units, bronze BRZHNA 12-7-1 has an increased complex of mechanical, technological and, especially, tribological properties. At comparable values of the friction coefficient, the wear resistance of bronze BRZHNA 12-7-1 is much higher. In contrast to the classic BrO10 bronze, composite bronze can be obtained in a hot-deformed state, welded, welded on steel and cast iron. The level of mechanical properties: σ0.2 = 220 MPa; σ

References:

[1] B.N. Arzamasov Construction materials: a Handbook. Mechanical Engineering, Moscow, 1990.


[2] Yu.S. Avraamov, A.D. Shlyapin Alloys based on systems with limited solubility in the liquid state. Intercontact science, Moscow, 2002


[3] C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida Thermodynamic database of the phase diagrams in Cu–Fe base ternary systems. J. Phase Equilib. Diffus. 25 (2004) 320–328.


[4] M. Baricco, E. Bosco, G. Acconciaioco, P. Rizzi, M. Coisson Rapid solidification of Cu– Fe–Ni alloys. Mater. Sci. Eng. A. 375–377 (2004) 1019–1023.


[5] Y.Y. Chuang, R. Schmid, and Y.A. Chang Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe–Cu–Ni system. Acta Mater. 8 (1985) 1369–1380.


[6] K.P. Gupta The Cu–Fe–Ni (Copper–Iron–Nickel) system. Phase Diagram of Ternary Nickel Alloys. 1 (1990) 290–315.


[7] S.A. Saltykov Stereometric metallography. Metallurgy, Moscow, 1970.


[8] B.A. Potekhin, V.V. Ilyushin, A.S. Khristolyubov Special properties of babbitt B83 obtained by the turbulent casting method. Casting and metallurgy. 57 (2010) 78-81.


[9] N.P. Lyakishev State diagrams of double metal systems: A Handbook. Mashinostroenie, Moscow, 1997


[10] G.W. Qin, G. Zhao, M. Jiang, H.X. Li, S.M. Hao. The isothermal sections of the Cu–Ni– Fe ternary system at 600, 800, 1000, and 1050∘C. Z. Metallkd. 5 (2000) 379–382.


[11] V.M. Lopez, N. Sano, T. Sakurai, and K. Hirano. A study of phase decomposition in Cu–Ni–Fe alloys. Acta Metall. Mat. 1 (1993) 265–271.


[12] K.J. Ronka, A.A. Kodentsov, P.J.J. Van Loon, J.K. Kivilahti, F.J.J. Van Loo. Thermodynamic and kinetic study of diffusion paths in the system Cu–Fe–Ni. Metall. Mater. Trans. A. 27 (1996) 2229–2238.


[13] . U. Ugaste, A.A. Kodentsov, and F.J.J. Van Loo. Interdiffusion and Kirkendall-effect in the Fe–Ni–Cu system. Sol. St. Phenomena. 72 (2000) 117–122.


[14] B. Potekhin, A. Hernández, A. Khristolyubov, V. Ilushin. Formación de la estructura y propiedades de los bronces Fe-Ni-Al. CIM 2011 – VI Congreso Internacional del Materiales. 27-30 Noviembre de 2011, Bogotá D.C., Colombia.


[15] B.A. Potekhin, V.V. Ilyushin, A.S. Khristolyubov, A.Yu. Zhilyakov, A. Hernandez. The possibility of creating a composite bronze alloy - martensitic-aging steel. MITOM. 5 (2013) 6-10.


[16] B.A. Potekhin, A.S. Khristolyubov, A.Yu. Zhilyakov, V.V. Ilyushin. Features of the formation of the structure of composite bronzes reinforced with steel dendrites. Voprosy Materialovedenia. 76 (2013) 43-49.


[17] Ya.M. Potak. High-strength steels. Metallurgy, Moscow, 1972.


[18] Ya.M. Potak, and E.A. Sagalevich. Structural Diagram of Deformable Stainless Steels. MITOM. 9 (1971) 12–16.


[19] E.A. Matsin. Charpy rule and antifriction alloy surface microrelief. Proceedings of the 2nd All-Union Conference on Friction and Wear in Machines. Academy of Sciences of the USSR, Moscow. 3 (1948) 222-229.


[20] B.A. Potekhin, V.V. Ilyushin, A.S. Khristolyubov, and A.Yu. Zhilyakov. Formation of structure and properties of composite bronzes reinforced by steel dendrites. Phys. Met. Metallogr. 115 (2014) 413–419.


[21] B.A. Potekhin, A.S. Khristolyubov, A.A. Hernandez Fereira. New class of composite bronze, armed with steel dendrites for antifriction technique. XXIV International scientific conference Trans & Motauto 16, Varna Bulgaria, June 2016.


[22] V.I. Shumyakov, B.A. Potekhin, Yu.S. Korobov, A.S. Khristolyubov, V.V. Ilyushin, S.P. Kochugov, A.N. Balin, and A.A. Vishnevskii, RF Patent 170923, (2017).

Recommendations
PHOTOREACTOR DESIGN BY CLAY POTTERY MODIFICATION WITH TIO2 COATING IN PEAT WATER PURIFICATION
Kasman Ediputra et al., KNE ENGINEERING, 2019
APPLICATION OF GENETIC ALGORITHMS TECHNIQUE IN THE GENERATION OF ACADEMIC SCHEDULES
Jason Gómez et al., KNE ENGINEERING, 2020
PHOTOCATALYTIC DEGRADATION OF DIRECT YELLOW-27 BY PHOTOLYSIS WITH UV-LIGHT AND SOLAR IRRADIATION USING N-DOPED TIO2
Deliza et al., KNE ENGINEERING, 2019
EMPIRICAL STUDY BETWEEN COMPILED, INTERPRETED, AND DYNAMIC PROGRAMMING LANGUAGES APPLYING STABLE ORDERING ALGORITHMS (CASE STUDY: JAVA, PYTHON, JYTHON, JPYPE AND PY4J)
Milton Labanda-Jaramillo et al., KNE ENGINEERING, 2018
OPTIMIZING GENOMIC DNA ISOLATION AND PCR AMPLIFICATION FOR PASAK BUMI (EURYCOMA LONGIFOLIA)
A. Susilowati et al., KNE ENGINEERING, 2019
HARDWARE AND SOFTWARE INFRASTRUCTURE OF DIGITAL TWIN TECHNOLOGY
Zakharov L.A et al., KNE ENGINEERING, 2020
METHODOLOGY FOR COKEMAKING TECHNOLOGY SELECTION
Y. Gordon et al., KNE ENGINEERING, 2018
RELATIONSHIP BETWEEN THE TEXTURE AND YOUNG’S MODULUS OVER THE SECTION OF COLD-ROLLED RODS OF LOW-MODULUS BIOCOMPATIBLE ALLOY
S. Grib et al., KNE ENGINEERING, 2019
ANALYSIS OF DIGITAL TWIN DEFINITION AND ITS DIFFERENCE FROM SIMULATION MODELLING IN PRACTICAL APPLICATION
I. Krasikov et al., KNE ENGINEERING, 2020
THE STRUCTURE AND MECHANICAL PROPERTIES OF LOW CARBON STEEL AFTER CONTROLLED ROLLING AND LOW-TEMPERATURE TREATMENT
P. O. Selivanov et al., KNE ENGINEERING, 2019
Powered by
Download
HTML
Cite
Share
statistics

309 Abstract Views

224 PDF Downloads