KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

The Formation of the Structure and Tribological Properties of Composite Bronzes Reinforced with Steel Dendrites

Published date:Apr 15 2019

Journal Title: KnE Engineering

Issue title: XIX International scientific-technical conference “The Ural school-seminar of metal scientists-young researchers”

Pages:176–183

DOI: 10.18502/keg.v1i1.4407

Authors:
Abstract:

The possibility of creating of composite bronzes reinforced with steel dendrites from martensitic, austenitic and ferritic steels was considered. Compared to the BrO10 bronze widely used in the sliding friction units, bronze BRZHNA 12-7-1 has an increased complex of mechanical, technological and, especially, tribological properties. At comparable values of the friction coefficient, the wear resistance of bronze BRZHNA 12-7-1 is much higher. In contrast to the classic BrO10 bronze, composite bronze can be obtained in a hot-deformed state, welded, welded on steel and cast iron. The level of mechanical properties: σ0.2 = 220 MPa; σ

References:

[1] B.N. Arzamasov Construction materials: a Handbook. Mechanical Engineering, Moscow, 1990.


[2] Yu.S. Avraamov, A.D. Shlyapin Alloys based on systems with limited solubility in the liquid state. Intercontact science, Moscow, 2002


[3] C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida Thermodynamic database of the phase diagrams in Cu–Fe base ternary systems. J. Phase Equilib. Diffus. 25 (2004) 320–328.


[4] M. Baricco, E. Bosco, G. Acconciaioco, P. Rizzi, M. Coisson Rapid solidification of Cu– Fe–Ni alloys. Mater. Sci. Eng. A. 375–377 (2004) 1019–1023.


[5] Y.Y. Chuang, R. Schmid, and Y.A. Chang Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe–Cu–Ni system. Acta Mater. 8 (1985) 1369–1380.


[6] K.P. Gupta The Cu–Fe–Ni (Copper–Iron–Nickel) system. Phase Diagram of Ternary Nickel Alloys. 1 (1990) 290–315.


[7] S.A. Saltykov Stereometric metallography. Metallurgy, Moscow, 1970.


[8] B.A. Potekhin, V.V. Ilyushin, A.S. Khristolyubov Special properties of babbitt B83 obtained by the turbulent casting method. Casting and metallurgy. 57 (2010) 78-81.


[9] N.P. Lyakishev State diagrams of double metal systems: A Handbook. Mashinostroenie, Moscow, 1997


[10] G.W. Qin, G. Zhao, M. Jiang, H.X. Li, S.M. Hao. The isothermal sections of the Cu–Ni– Fe ternary system at 600, 800, 1000, and 1050∘C. Z. Metallkd. 5 (2000) 379–382.


[11] V.M. Lopez, N. Sano, T. Sakurai, and K. Hirano. A study of phase decomposition in Cu–Ni–Fe alloys. Acta Metall. Mat. 1 (1993) 265–271.


[12] K.J. Ronka, A.A. Kodentsov, P.J.J. Van Loon, J.K. Kivilahti, F.J.J. Van Loo. Thermodynamic and kinetic study of diffusion paths in the system Cu–Fe–Ni. Metall. Mater. Trans. A. 27 (1996) 2229–2238.


[13] . U. Ugaste, A.A. Kodentsov, and F.J.J. Van Loo. Interdiffusion and Kirkendall-effect in the Fe–Ni–Cu system. Sol. St. Phenomena. 72 (2000) 117–122.


[14] B. Potekhin, A. Hernández, A. Khristolyubov, V. Ilushin. Formación de la estructura y propiedades de los bronces Fe-Ni-Al. CIM 2011 – VI Congreso Internacional del Materiales. 27-30 Noviembre de 2011, Bogotá D.C., Colombia.


[15] B.A. Potekhin, V.V. Ilyushin, A.S. Khristolyubov, A.Yu. Zhilyakov, A. Hernandez. The possibility of creating a composite bronze alloy - martensitic-aging steel. MITOM. 5 (2013) 6-10.


[16] B.A. Potekhin, A.S. Khristolyubov, A.Yu. Zhilyakov, V.V. Ilyushin. Features of the formation of the structure of composite bronzes reinforced with steel dendrites. Voprosy Materialovedenia. 76 (2013) 43-49.


[17] Ya.M. Potak. High-strength steels. Metallurgy, Moscow, 1972.


[18] Ya.M. Potak, and E.A. Sagalevich. Structural Diagram of Deformable Stainless Steels. MITOM. 9 (1971) 12–16.


[19] E.A. Matsin. Charpy rule and antifriction alloy surface microrelief. Proceedings of the 2nd All-Union Conference on Friction and Wear in Machines. Academy of Sciences of the USSR, Moscow. 3 (1948) 222-229.


[20] B.A. Potekhin, V.V. Ilyushin, A.S. Khristolyubov, and A.Yu. Zhilyakov. Formation of structure and properties of composite bronzes reinforced by steel dendrites. Phys. Met. Metallogr. 115 (2014) 413–419.


[21] B.A. Potekhin, A.S. Khristolyubov, A.A. Hernandez Fereira. New class of composite bronze, armed with steel dendrites for antifriction technique. XXIV International scientific conference Trans & Motauto 16, Varna Bulgaria, June 2016.


[22] V.I. Shumyakov, B.A. Potekhin, Yu.S. Korobov, A.S. Khristolyubov, V.V. Ilyushin, S.P. Kochugov, A.N. Balin, and A.A. Vishnevskii, RF Patent 170923, (2017).

Recommendations
THE INFLUENCE OF MOLYBDENUM EQUIVALENT ON THE ANISOTROPY OF THERMAL EXPANSION OF TITANIUM MARTENSITE LATTICE
S. Demakov et al., KNE ENGINEERING, 2019
LOW TEMPERATURE GLASS SINTERING BASED ON SILICO SODIUM RESINS
M. P. Sáez-Pérez et al., KNE ENGINEERING, 2020
MATHEMATICAL MODEL OF HEAT EXCHANGE AND APPROXIMATE METHODS OF SOLUTION OF RADIATION TRANSFER EQUATION IN THE MELTING FURNACE TANK
V. Shvydkii et al., KNE ENGINEERING, 2018
DEVELOPING EFFECTIVE ROLL COOLING SYSTEMS BASED ON COMPUTATIONAL SIMULATION
Yu. I. Lipunov et al., KNE ENGINEERING, 2018
USE OF A PARABOLIC TROUGH COLLECTOR IN THE KINGDOM OF BAHRAIN CONDITIONS FOR WATER DESALINATION
A. Rashid, KNE ENGINEERING, 2018
PSA-STAGE FEATURES OF THE HYBRID MEMBRANE-SORPTION OXYGEN CONCENTRATOR
A. Tishin et al., KNE ENGINEERING, 2018
NUMERICAL STUDY OF BIRD FLU INFECTION PROCESS WITHIN A POULTRY FARM WITH AGE STRUCTURED MODEL
T. D. Nova et al., KNE ENGINEERING, 2019
COULOMB CORRECTIONS IN PHOTOELECTRON SPECTRA IN THE ADIABATIC LIMIT
M. Frolov et al., KNE ENGINEERING, 2018
EFFECT OF NITROGEN IMPLANTATION ON THE STRUCTURE AND PROPERTIES OF AUSTENITIC CORROSION-RESISTANT STEELS
D. Asanova et al., KNE ENGINEERING, 2019
CONCEPTUAL MODEL FOR SERIOUS GAMES DESIGN: CASE STUDY OF CHILDREN WITH ATTENTION DEFICIT HYPERACTIVITY DISORDER
D. Avila-Pesantez et al., KNE ENGINEERING, 2018
Powered by
Download
HTML
Cite
Share
statistics

309 Abstract Views

224 PDF Downloads