KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Formation of Structured Graphite Layers for Hetero-epitaxial Graphene Synthesis

Published date: Oct 08 2018

Journal Title: KnE Engineering

Issue title: Breakthrough directions of scientific research at MEPhI: Development prospects within the Strategic Academic Units

Pages: 375–379

DOI: 10.18502/keg.v3i6.3017

Authors:
Abstract:

The results of experiments on the deposition of structured graphite layers in a glow discharge with a hollow cathode on Ni(111) substrate, which is a promising matrix for hetero-epitaxial synthesis of structurally homogeneous graphene, are described. The technique shows good repeatability. The resulting layers of nano-crystalline graphite have good homogeneity, high field emission, a lot of ‘needles’ of vertically growing graphene on its surfaces.

 

 

Keywords: graphene, hollow cathode, glow discharge, nc-graphite

References:

[1] Novoselov, K. S., Fal’ko, V. I., Colombo, L., et al. (2012). A roadmap for graphene. Nature, vol. 490, pp. 192–200.


[2] Randviir, E. P., Brownson, D. A. C., Banks, C. E. (2014). A decade of graphene research: production, applications and outlook. Materialstoday, vol. 17, no. 9, pp. 426–432.


[3] Ferrari, A. C., Bonaccorso, F., Fal’ko, V., et al. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, vol. 7, pp. 4598–4810.


[4] Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, vol. 5, pp. 487– 496.


[5] Bonaccorso, F., Lombardo, A., Hasan, T., et al. (2012). Production and processing of graphene and 2d crystals. Materialstoday, vol. 15, pp. 564–589.


[6] Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, vol. 306, p. 666.


[7] Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, vol. 102, no. 10451.


[8] Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, vol. 438, p. 197.


[9] Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials, vol. 6, p. 183.


[10] Hernandez, Y., Nicolosi, V., Lotya, M., et al. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, vol. 3, p. 563.


[11] Park, S. and Ruoff, R. S. (2009). Chemical methods for the production of graphene. Nature Nanotechnology, vol. 4, p. 217.


[12] Kim, K. S., Zhao, Y., Jang, H., et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, vol. 457, p. 706.


[13] Wu, Z. S., Ren, W., Gao, L., et al. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, vol. 3, p. 411.


[14] Berger, C., Song, Z., Li, T., et al. (2004). Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, vol. 108, p. 19912.


[15] Berger, C., Song, Z., Li, X., et al. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, vol. 312, p. 1191.


[16] Emtsev, K. V., Bostwick, A., Horn, K., et al. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, vol. 8, p. 203.


[17] Hibino, H., Kageshima, H., Maeda, F., et al. (2008). Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Physical Review B, vol. 77, p. 075413.


[18] Ohta, T., Gabaly, F. E., Bostwick, A., et al. (2008). Morphology of graphene thin film growth on SiC(0001). New Journal of Physics, vol. 10, p. 023034.


[19] Hass, J., Li, T., Li, X., et al. (2006). Highly ordered graphene for two dimensional electronics. Applied Physics Letters, vol. 89, p. 143106.


[20] Sutter, P. W., Flege, J.-I., and Sutter, E. A. (2008). Epitaxial graphene on ruthenium, Nature Materials, vol. 7, p. 406.


[21] Marchini, S., Gunther, S., and Wintterlin, J. (2007). Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B, vol. 76, p. 075429.


[22] Vazquez de Parga, A. L., Calleja, F., Borca, B., et al. (2008). Periodically rippled graphene: Growth and spatially resolved electronic structure. Physical Review Letters, vol. 100, p. 056807.


[23] Pan, Y., Shi, D.-X., and Gao, H.-J. (2007). Chinese Physics, vol. 16, p. 3151.


[24] N’Diaye, A. T., Bleikamp, S., Feibelman, P. J., et al. (2006). Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111). Physical Review Letters, vol. 97, p. 215501.


[25] Coraux J, N‘Diaye, A. T., Busse, C., et al. (2008). Structural coherency of graphene on Ir(111). Nano Letters, vol. 8, p. 565.


[26] Arnoult, W. J. and McLellan, R. B. (1972). The solubility of carbon in rhodium ruthenium, iridium and rhenium. Scripta Metallurgica, vol. 6, p. 1013.


[27] Chu, P. K. and Li, L. (2006). Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, vol. 96, no. 2–3, pp. 253–277.

Download
HTML
Cite
Share
statistics

210 Abstract Views

169 PDF Downloads