KnE Engineering
ISSN: 2518-6841
The latest conference proceedings on all fields of engineering.
Formation of Structured Graphite Layers for Hetero-epitaxial Graphene Synthesis
Published date: Oct 08 2018
Journal Title: KnE Engineering
Issue title: Breakthrough directions of scientific research at MEPhI: Development prospects within the Strategic Academic Units
Pages: 375–379
Authors:
Abstract:
The results of experiments on the deposition of structured graphite layers in a glow discharge with a hollow cathode on Ni(111) substrate, which is a promising matrix for hetero-epitaxial synthesis of structurally homogeneous graphene, are described. The technique shows good repeatability. The resulting layers of nano-crystalline graphite have good homogeneity, high field emission, a lot of ‘needles’ of vertically growing graphene on its surfaces.
Keywords: graphene, hollow cathode, glow discharge, nc-graphite
References:
[1] Novoselov, K. S., Fal’ko, V. I., Colombo, L., et al. (2012). A roadmap for graphene. Nature, vol. 490, pp. 192–200.
[2] Randviir, E. P., Brownson, D. A. C., Banks, C. E. (2014). A decade of graphene research: production, applications and outlook. Materialstoday, vol. 17, no. 9, pp. 426–432.
[3] Ferrari, A. C., Bonaccorso, F., Fal’ko, V., et al. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, vol. 7, pp. 4598–4810.
[4] Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, vol. 5, pp. 487– 496.
[5] Bonaccorso, F., Lombardo, A., Hasan, T., et al. (2012). Production and processing of graphene and 2d crystals. Materialstoday, vol. 15, pp. 564–589.
[6] Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, vol. 306, p. 666.
[7] Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, vol. 102, no. 10451.
[8] Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, vol. 438, p. 197.
[9] Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials, vol. 6, p. 183.
[10] Hernandez, Y., Nicolosi, V., Lotya, M., et al. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, vol. 3, p. 563.
[11] Park, S. and Ruoff, R. S. (2009). Chemical methods for the production of graphene. Nature Nanotechnology, vol. 4, p. 217.
[12] Kim, K. S., Zhao, Y., Jang, H., et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, vol. 457, p. 706.
[13] Wu, Z. S., Ren, W., Gao, L., et al. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, vol. 3, p. 411.
[14] Berger, C., Song, Z., Li, T., et al. (2004). Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, vol. 108, p. 19912.
[15] Berger, C., Song, Z., Li, X., et al. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, vol. 312, p. 1191.
[16] Emtsev, K. V., Bostwick, A., Horn, K., et al. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, vol. 8, p. 203.
[17] Hibino, H., Kageshima, H., Maeda, F., et al. (2008). Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Physical Review B, vol. 77, p. 075413.
[18] Ohta, T., Gabaly, F. E., Bostwick, A., et al. (2008). Morphology of graphene thin film growth on SiC(0001). New Journal of Physics, vol. 10, p. 023034.
[19] Hass, J., Li, T., Li, X., et al. (2006). Highly ordered graphene for two dimensional electronics. Applied Physics Letters, vol. 89, p. 143106.
[20] Sutter, P. W., Flege, J.-I., and Sutter, E. A. (2008). Epitaxial graphene on ruthenium, Nature Materials, vol. 7, p. 406.
[21] Marchini, S., Gunther, S., and Wintterlin, J. (2007). Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B, vol. 76, p. 075429.
[22] Vazquez de Parga, A. L., Calleja, F., Borca, B., et al. (2008). Periodically rippled graphene: Growth and spatially resolved electronic structure. Physical Review Letters, vol. 100, p. 056807.
[23] Pan, Y., Shi, D.-X., and Gao, H.-J. (2007). Chinese Physics, vol. 16, p. 3151.
[24] N’Diaye, A. T., Bleikamp, S., Feibelman, P. J., et al. (2006). Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111). Physical Review Letters, vol. 97, p. 215501.
[25] Coraux J, N‘Diaye, A. T., Busse, C., et al. (2008). Structural coherency of graphene on Ir(111). Nano Letters, vol. 8, p. 565.
[26] Arnoult, W. J. and McLellan, R. B. (1972). The solubility of carbon in rhodium ruthenium, iridium and rhenium. Scripta Metallurgica, vol. 6, p. 1013.
[27] Chu, P. K. and Li, L. (2006). Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, vol. 96, no. 2–3, pp. 253–277.