KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

GaInAs/AlInAs Heteropair Quantum Cascade Laser Operating at a Wavelength of 5.6 μm and Temperature of Above 300K

Published date: Oct 08 2018

Journal Title: KnE Engineering

Issue title: Breakthrough directions of scientific research at MEPhI: Development prospects within the Strategic Academic Units

Pages: 236–243

DOI: 10.18502/keg.v3i6.2999

Authors:
Abstract:

A quantum cascade laser based on a strain-compensated Ga0.4In0.6As/Al0.58In0.42As heteropair is developed, which operates in a pulse mode in the wavelength range of 5.5–5.6 µm at a temperature of up to 350 K. Such characteristics are obtained due to increased quantum well depth and a two-phonon depopulation mechanism for the lower laser level. The laser epitaxial heterostructure was grown by the MOVPE method. Investigation by the high-resolution X-ray diffraction technique confirmed a high quality of the heterostructure. The threshold current density is 1.6 kA/cm2 at 300 К. The characteristic temperature is T0 = 161 K for the temperature range of 200–350 K. For a laser of size 20 µm × 3 mm with cleaved mirrors, the maximum pulse power is 1.1 W at 80 K and 130 mW at 300 K.

 

 

Keywords: quantum cascade laser, GaInAs/AlInAs heteropair, MOVPE, the middle IR spectrum

References:

[1] Faist, J., Capasso, F., Sirtori, C., et al. (1999). Quantum cascade lasers, in H. C. Liu and F. Capasso (eds.) Semiconductors and Semimetals, p. 66. San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Academic Press.


[2] Faist, J. (2013). Quantum Cascade Lasers. Oxford: Oxford University Press.


[3] Roberts, J. S., Green, R. P., Wilson, L. R., et al. (2003). Quantum cascade lasers grown by metalorganic vapor phase epitaxy. Applied Physics Letters, vol. 82, p. 4221.


[4] Wilson, L. R., Green, R. P., Krysa, A. B., et al. (2004). High performance quantum cascade lasers grown by metal - Organic vapor phase epitaxy. Proceedings of SPIE - The International Society for Optical Engineering, vol. 5564, p. 156.


[5] Krysa, A. B., Revin, D. G., Commin, J. P., et al. (2011). Room-Temperature GaAs/AlGaAs Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy. IEEE Photonics Technology Letters, vol. 23, p. 774.


[6] Faist, J., Capasso, F., Sivco, D. L., et al. (1998). Short wavelength (λ∼3.4μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Applied Physics Letters, vol. 72, p. 680.


[7] Van de Walle, C. G. (1989). Band lineups and deformation potentials in the modelsolid theory. Physical Review B, vol. 39, p. 1871.


[8] Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R. (2001). Band parameters for III– V compound semiconductors and their alloys. Journal of Applied Physics, vol. 89, p. 5815.


[9] Li E. H. (2000). Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E: Low-dimensional Systems and Nanostructures, vol. 5, pp. 215–227.


[10] Kim, J. and Fischetti, M. V. (2010). Electronic band structure calculations for biaxially strained Si, Ge, and III–V semiconductors. Journal of Applied Physics, vol. 108, p. 013710.


[11] Walther, T. and Krysa, A. B. (2017). Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures. Journal of Microscopy, vol. 268, p. 298.


[12] Wang, C. A., Schwarz, B., Siriani, D. F., et al. (2017). MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance. Journal of Crystal Growth, vol. 464, p. 215.

Download
HTML
Cite
Share
statistics

368 Abstract Views

244 PDF Downloads