KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Agriculture Application to Predict Soil Fertility with the Application of Fuzzy Tsukamoto

Published date: Mar 07 2024

Journal Title: KnE Engineering

Issue title: Jakarta International Conference on Multidisciplinary Studies towards Creative Industries (JICOMS)

Pages: 51–67

DOI: 10.18502/keg.v6i1.15349

Authors:

Devia KartikaUniversitas Putra Indonesia YPTK Padang, Indonesia

Wifra SafitriUniversitas Putra Indonesia YPTK Padang, Indonesia

Abstract:

Indonesia is as an agricultural country, having majority of the population working in agriculture. Indonesia is an agricultural country that has extensive agricultural land and diverse and abundant natural resources. Based on Sakernas BPS 2021 data, Indonesian farmers numbered 38.77 million people. In the agricultural sector, land is a factor that plays a very important role in determining agricultural businesses. Where each region has different levels of soil fertility, depending on the type of soil and geographic location of an area. So, soil fertility is one of the determining factors for the success of agricultural businesses. Many farmers do not understand soil fertility in determining the right type of plant. This research aims to help people determine soil fertility parameters such as (C-Organic, P2O5 HCL, K2O HCL, KTK, Base Saturation, PH H2O), which will be processed using a WEB-based application using the Tsukamoto fuzzy method to predict fertility. Soil for selecting plant types and choosing the right land. From the land data obtained at the agricultural center, it is processed manually using the fuzzy method and applied to a system. Therefore, the results of this research will provide soil fertility status from data processed with C-organic (0.81%), pH H2O (5.38), P2O5 (2.32 ppm), KTK (8.5), K2O (50 ppm), Base Saturation (50%), we got a soil fertility status of 46.03, which is in the medium range. Meanwhile, in the system that has been built, the results obtained were 45.54, which is also in the same range, namely medium. From the results obtained, there was not much difference observed in the manual search and the system obtained results, it is estimated that they obtained 97% similarity. With this soil fertility detection system, it can increase the accuracy of soil fertility and make it easier to predict soil fertility. It is hoped that this system can have implications for the agricultural sector.

Keywords: agriculture, soil fertility, Fuzzy Tsukomoto, Web

References:

[1] Kartika R, Murnomo A, Adi SS. Implementasi Metode Analytical Hierarchy Process Untuk Prediksi Tingkat Kesuburan Tanah. Edu Komputika J. 2019;6(1):8–14.

[2] Ph B, Suhu D, Susilawati T, Rizal A, Jamaludin A. “Penerapan Logika Fuzzy Pada Sistem Kelayakan Tanah Sawah,” JoP, vol. 5, no. 1, pp. 42–47, 2019, [Online]. Available: https://online-journal.unja.ac.id/jop/article/view/8216

[3] Nidomudin A, Nugroho AP, Cholis MN. “Sistem Pakar Deteksi Tingkat Kesuburan Tanah Menggunakan Fuzzy Logic,” JOINTECS (Journal Inf. Technol. Comput. Sci. 2017;2(2):91–5.

[4] Prihantini TK, Abadi AM. Analysis of agriculture land pollution in Pangkal Baru village, Sintang district using Sugeno method. J Phys Conf Ser. 2019;1320(1):012032.

[5] Ayusni and Y., Dedi Hermon, “Studi Tentang Kesesuaian Lahan Untuk Tanaman Kelapa Sawit (”.

[6] Arogundade OT, Atasie C, Misra S, Sakpere AB, Abayomi-Alli OO, Adesemowo KA. Improved Predictive System for Soil Test Fertility Performance Using Fuzzy Rule Approach, vol. 1374, no. March. Springer Singapore, 2021. https://doi.org/10.1007/978- 981-16-0708-0_21.

[7] Ogunleye GO, Fashoto SG, Mashwama P, Arekete SA, Olaniyan OM, Omodunbi BA. Fuzzy logic tool to forecast soil fertility in Nigeria. ScientificWorldJournal. 2018 Oct;2018:3170816.

[8] Rizky N, Arysanti D, Adyatma S. Evaluasi Kesesuaian Lahan Untuk Tanaman Kelapa Sawit Di Kecamatan Batang Alai Utara, Kabupaten Hulu Sungai Tengah [Online,. Available: http://ppjp.unlam.ac.id/journal/index.php/jpg]. J. Pendidik. Geogr. 2017;4(4):9–22.

[9] Hasibuan NW, Afrianti S. Kajian Sifat Kimia Tanah Pada Perkebun Sawit Dengan Menggunakan Mucuna bracteata PT. PP London Sumatra Indonesia, Tbk Unit. Agriprimatech. 2020;4(1):34–41.

[10] Zulkham Umar Rosyidin, Dityo Kreshna Argeshwara, Aji Prasetya Wibawa, Anik Nur Handayani, and Mokh. Sholihul Hadi, “Pemodelan Sistem Deteksi Kadar Unsur Hara Tanah Berdasarkan Nilai NPK Menggunakan Metode Fuzzy Mamdani,” J. Sains dan Inform., vol. 9, no. November 2022, pp. 77–88, 2023, https://doi.org/10.34128/jsi.v9i1.523..

[11] Supardi, “Implikasi Logika Fuzzy Untuk mengukur Status Kesehatan masyarakat berdasarkan kecukupan gizi,” 2012.

[12] Sitio SL. Penerapan Fuzzy Inference System Sugeno untuk Menentukan Jumlah Pembelian Obat (Studi Kasus: Garuda Sentra Medika). J. Inform. Univ. Pamulang. 2018;3(2):104.

[13] Muliadi M, Budiman I, Pratama MA, Sofyan A. “Fuzzy Dan Dempster-Shafer Pada Sistem Pakar Diagnosa Penyakit Tanaman Cabai,” Klik - Kumpul. J. Ilmu Komput. 2017;4(2):209.

[14] Irawan MD, Herviana H. Implementasi Logika Fuzzy Dalam Menentukan Jurusan Bagi Siswa Baru Sekolah Menengah Kejuruan (Smk) Negeri 1 Air Putih. J. Teknol. Inf. 2019;2(2):129.

[15] Zulfa I, Septima R, Syah I. “Sistem Pakar Untuk Mengetahui Tingkat Kesuburan Tanah Pada Jenis Tanaman Kopi Menggunakan Metode Fuzzy Logic (Studi Kasus Kota Takengon),” J. Keilmuan san Apl. Inform (Champaign). 2020;5(36):37–52.

[16] Davvaz B, Mukhlash I, Soleha S. Himpunan Fuzzy dan Rough Sets. Limits J. Math. Its Appl. 2021;18(1):79.

Download
HTML
Cite
Share
statistics

108 Abstract Views

94 PDF Downloads