KnE Engineering
ISSN: 2518-6841
The latest conference proceedings on all fields of engineering.
Computer Graphics of the Regular Polygons and their Applications
Published date: Jan 30 2018
Journal Title: KnE Engineering
Issue title: Simposio Iberoamericano en Programación Informática (Ibero-American Symposium on Computer Programming)
Pages: 58-70
Authors:
Abstract:
Abstract. The computer graphics of regular polygons and their applications is a scarcely studied area that allows to create situations of significant learning by its mathematical and geometric content. This research presents the design and programming of regular polygons and composite sacred figures using computational analytical geometry and development tools such as C#, GDI+ graphics engine and Java with SWING graphical interface. In order to achieve this, the Agile Extreme Programming (XP) methodology has been used to translate computer graphics software applications, with the purpose of understanding how computer graphics work to generate combinations of geometric figures based on regular polygons, fully parameterizable. The proof of concept, which included the evaluation of the application performance in both the .NET framework and the NetBeans IDE were carried out with a student’s group of engineering in Computer Graphics subject.
References:
[1] Ammeraal, L.: Computer Graphics for Java Programmers. 3rd Edition. Wiley, England (2001) ISBN: 0471981427.
[2] Mortenson, M.E.: Mathematics for Computer Graphics Applications. Second Edition, Industrial Press Inc., New York (1999). ISBN: 0-8311-3111-X.
[3] Marschner, S., Shirley, P.: Fundamentals of Computer Graphics, Fourth Edition, AK Peters/CRC Press, USA, (2015). ISBN: 1482229394.
[4] Solomon, J.: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics, First Edition, AK Peters/CRC Press, USA, (2015).ISBN-13: 978- 1482251883.
[5] Vince, J.: Rotation Transform for Computer Graphics, Springer, 1st Edition, USA, (2011). ISBN: 0857291530.
[6] Kindle, J.: Geometría Analítica Plana y del Espacio. 1ra edición. McGraw-Hill, México (1970). ISBN: 9684229488.
[7] Lehmann, C.: Geometría Analítica. 1ra edición. UTEHA, México (1959).
[8] Kletenik, D.: Problemas de Geometría Analítica. 5ta edición. Editorial MIR, Moscú (1981).
[9] Lawlor, R., Mitos: Dioses, Misterios. Geometría Sagrada. Debate Decisiones, Madrid, 1993. ISBN: 84-7444-748-8.
[10] Ghyka, M.: Estética de las Proporciones en la Naturaleza y en las Artes. Editorial Poseidón, Barcelona, España, 1953. ISBN: 84-85083-06-7.
[11] Ghyka, M.: El Número de Oro. Ritos y Ritmos Pitagóricos en el Desarrollo de la Civilización Ocidental. Editorial Poseidón, Barcelona, España, 1978.
[12] Beck, K., 2000. Extreme programming explained: embrace change. Addison-Wesley Professional.
[13] Schneider, J. G., & Johnston, L., 2003. Extreme Programming at universities: an educational perspective. 25th International conference on software engineering (pp. 594-599). IEEE Computer Society.
[14] Villacís, C., Fuertes, W., Santillán, M., Aules, H., Tacuri, A., Zambrano, M. and Salguero, E. On the Development of Strategic Games based on a Semiotic Analysis: A Case Study of an Optimized Tic-Tac-Toe. In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 425-
432.