KnE Energy
ISSN: 2413-5453
The latest conference proceedings on energy science, applications and resources
Zero Order Correction of Shift-multiplexed Computer Generated Fourier Holograms Recorded in Incoherent Projection Scheme
Published date: Apr 25 2018
Journal Title: KnE Energy
Issue title: VII International Conference on Photonics and Information Optics (PhIO)
Pages: 542–548
Authors:
Abstract:
Application of computer holography methods provides the possibility to obtain the high quality holograms of objects that exist as digital models without the necessity of complex and high precision optical schemes. Computer generated Fourier holograms (CGFH) are widely used for record and optical restoration of relatively simple 2D raster objects. Application of incoherent photolithography methods such as incoherent projection allows the record of CGFHs as micro-holograms onto the photosensitiv medium with desired reduction of hologram sizes using relatively simple optical setup. The reconstruction optical schemes of CGFHs can be implemented in augmented reality displays and optical sight indicators. In this article the specificity of CGFH shift-multiplexed record process and particularly the method of zero order correction is discussed.
Keywords: computer generated hologram, Fourier hologram, incoherent projection scheme.
References:
[1] W.-J. Dallas, Computer-generated holograms, Springer-Verlag, 1980.
[2] A. Yu. Betin, V. I. Bobrinev, S. B. Odinokov, N. N. Evtikhiev, R. S. Starikov, S. N. Starikov, E. Yu. Zlokazov “Holographic memory optical system based on computer-generated Fourier holograms,” Applied Optics, Vol. 52, No. 33, pp. 8142–8145, 2013
[3] Odinokov, S., Zlokazov, E., Donchenko, S., Verenikina, N., “Optical memory system based on incoherent recorder and coherent reader of multiplexed computer generated one-dimensional Fourier transform holograms”, Japanese Journal of Applied Physics, 2017
[4] N N Evtikhiev, S N Starikov, E D Protsenko, E Yu Zlokazov, I V Solyakin, R S Starikov, E A Shapkarina and D V Shaulskiy, “Model of an invariant correlator with liquid-crystal spatial light modulators”, Quantum Electronics, Volume 42, Number 11, 2012
[5] M. S. Kovalev, G. K. Krasin, P. I. Malinina and S. B. Odinokov and H. R. Sagatelyan, “Wave front sensor based on holographic optical elements”, V International Conference of Photonics and Information Optics, Journal of Physics: Conference Series 737 (2016).
[6] A. Betin, S. Donchenko, M. Kovalev, S. Odinokov, A. Solomashenko, and E. Zlokazov, ”A combination of computer-generated Fourier holograms and light guide substrates with diffractive optical elements for optical display and sighting system,” in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), paper DW2A.20.
[7] A.Yu Betin, S.S. Donchenko, M.S. Kovalev, S.B. Odinokov, V.E. Talalaev. E. Yu. Zlokazov, “Computer generated Fourier hologram in optical devices of visual observation”, 10th International Symposium on Display Holography, 2015
[8] N. N. Evtikhiev, E. Yu. Zlokazov, R. S. Starikov, S. N. Starikov, V. I. Bobrinev, S. B. Odinokov, “Specificities of data page representation in projection type optical holographic memory system”, Optical Memory and Neural Networks, Volume 24(4), pp 272–278 (2015)
[9] S.B. Odinokov, E.Y. Zlokazov, A.Y. Betin, S. S. Donchenko, R. S. Starikov, N. M. Verenikina, “Application of optoelectronic micro-displays for holographic binary data recorder based on computer generated Fourier holograms”, Optical Memory and Neural Networks, Volume 25(4), pp 255–261, (2016).