KnE Energy

ISSN: 2413-5453

The latest conference proceedings on energy science, applications and resources

Expert System for Histological Diagnosis of Prostate Cancer

Published date: Apr 17 2018

Journal Title: KnE Energy

Issue title: The 2nd International Symposium "Physics, Engineering and Technologies for Biomedicine"

Pages: 328–332

DOI: 10.18502/ken.v3i2.1831

Authors:
Abstract:

The paper is dedicated to the development of expert system for histological prostate cancer diagnosis. The developed system allows to fill the knowledge base and then to use this knowledge base to support physician decision on the histological diagnosis of prostate disease.

Keywords: pattern recognition, prostate cancer diagnosis, decision making, decision support system

References:

[1] S.M. Zaytsev et al, A method of data structuring in the decision making support system in oncological diagnostics of prostate diseases, Journal of Physics: Conference Series, 798(1), 012132, (2017).


[2] Пушкарь Д.Ю., Раснер П.И. Дифференциальная диагностика рака, Русский медицинский журнал, 17, p.1298, (2014)


[3] J.T. Kwak et al, Automated prostate tissue referencing for cancer detection and diagnosis, BMC Bioinformatics, 17(1), 227, (2016)


[4] M.V. Kovylina, E. A. Prilepskaya, A. V. Govorov, V. V. D’iakov, K. B. Kolontarev, A. O. Vasilyev, A.V. Sidorenkov, P.I. Rasner, A.V. Glotov, D. Yu. Pushkar’, V. G. Nikitaev and A. N. Pronichev, “Benign mimics of prostatic adenocarcinoma”, Urologiia (Moscow, Russia : 1999), vol. 6, pp. 51-56, 2014.


[5] E. A. Prilepskaya, M.V. Kovylina, A. V. Govorov, A. V. Glotov, A. O. Vasilyev, K. B.Kolontarev, V. G. Nikitaev, A. N. Pronichev and D. Yu. Pushkar, “Possibilities of automated image analysis in pathology”, Arkhiv Patologii, vol. 78, no. 1, pp. 51-55, 2016.


[6] S. M. Zaytsev, V.G. Nikitaev, A.N. Pronichev, B.N. Onykiy, E.V. Polyakov, A.A. Kurdin, D.Y. Pushkar, E.A. Prilepskaya, M.V. Kovilina, A.V. Govorov, A.V. Glotov, A.O. Vasilyev and K.V. Kolontarev “Computer system for remote consultations in the diagnosis of urological malignancies”, Journal of Physics: Conference Series, vol. 798, no. 1, p. 012133, 2017.


[7] S. M. Zaytsev, V.G. Nikitaev, A.N. Pronichev, O.V. Nagornov, E.V. Polyakov, N.A. Romanov, D.Y. Pushkar, E.A. Prilepskaya, M.V. Kovilina, A.V. Govorov, A.V. Glotov, A.O. Vasilyev and K.V.Kolontarev “A method of data structuring in the decisionmaking support system in oncological diagnostics of prostate diseases”, Journal of Physics: Conference Series, vol. 798, no. 1, p. 012132, 2017.


[8] V. G. Nikitaev, A. N. Pronichev, E. V. Polyakov, V. V. Dmitrieva, N. N. Tupitsyn, M. A. Frenkel and A. V. Mozhenkova, “Application of texture analysis methods to computer microscopy in the visible range of electromagnetic radiation” Bulletin of the Lebedev Physics Institute, vol. 43, no. 10, pp 306-308, 2016.


[9] V. G. Nikitaev, “Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: Intelligent morphological systems - Problems and solutions” Journal of Physics: Conference Series, vol. 798, no. 1, p. 012131, 2017.


[10] M. I. Davydov, V. Y. Selçuk, V. G. Nikitaev, O. V. Nagornov, A. N. Pronichev, V. V. Dmitriev, E. V. Polyakov, A. O. Rasulov, V. P., Kononets, S. A. Melikhov, I. S. Akimov, Z. M. Yunakov, I. V. Kardashev, A. A. Lavrova, V. K. Golovanov, A. A., Pasnik and V. E. Strigin, “Physical research methods in expert systems of oncological disease diagnostics” Bulletin of the Lebedev Physics Institute, vol. 42, no. 8, pp 237-239, 2015.


[11] V. G. Nikitaev, “Expert Systems in Information Measuring Complexes of Oncological Diagnoses” Measurement Techniques, vol. 58, no. 6, pp. 719-723, 2015.


[12] V. G. Nikitaev, “Modern measurement principles in intellectual systems for a histological diagnosis of oncological illnesses” Measurement Techniques, vol. 58, no. 4, pp. 467-470, 2015.


[13] V. G. Nikitaev, “Medical and biological measurements: Experimental hightechnology information-measuring complexes of cancer diagnosis: Problems and key points of the construction methodology” Measurement Techniques, vol. 58, no. 2, pp. 214-218, 2015.

Download
HTML
Cite
Share
statistics

385 Abstract Views

321 PDF Downloads