KnE Energy

ISSN: 2413-5453

The latest conference proceedings on energy science, applications and resources

The Effect of Quantum Dot Shell Structure on Fluorescence Quenching By Acridine Ligand

Published date:Apr 17 2018

Journal Title: KnE Energy

Issue title: The 2nd International Symposium "Physics, Engineering and Technologies for Biomedicine"

Pages:194–201

DOI: 10.18502/ken.v3i2.1813

Authors:
Abstract:

The current strategy for the development of advanced methods of tumor treatment focuses on targeted drug delivery to tumor cells. Quantum dot (QD) - semiconductor fluorescent nanocrystal, conjugated with a pharmacological ligand, such as acridine, ensures real-time tracking of the delivery process of the active substance. However, the problem of QD fluorescence quenching caused by charge transfer can arise in the case when acridine is bound to the QD. We found that QD shell structure has a defining role on photoinduced electron transfer from QD on acridine ligand which leads to quenching of QD photoluminescence. We have found that multishell CdSe/ZnS/CdS/ZnS QD structure provides minimal reduction of photoluminescence quantum yield at minimal shell thickness compared to classical thin ZnS or “giant” shells. Thus, CdSe/ZnS/CdS/ZnS core/multishell QD could be an optimal choice for engineering of small-sized acridine-based fluorescent labels for tumor diagnosis and treatment systems.

Keywords: Quantum dot, photoluminescence quenching, DNA ligand, acridine derivative.

References:

[1] Nagy A. et al. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. // ACS nano. 2012. Vol. 6, № 6. P. 4748–4762.


[2] Shi J. et al. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications // Nano Letters. American Chemical Society, 2010. Vol. 10, № 9. P. 3223–3230.


[3] Sukhanova A. et al. Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. // Nanomedicine: nanotechnology, biology, and medicine. 2012. Vol. 8, № 4. P. 516– 525.


[4] Bilan R. et al. Quantum Dot Surface Chemistry and Functionalization for Cell Targeting and Imaging // Bioconjugate Chemistry. 2015. Vol. 26, № 4. P. 609–624.


[5] Linkov P. et al. Multifunctional Nanoprobes for Cancer Cell Targeting, Imaging and Anticancer Drug Delivery // Physics Procedia. 2015. Vol. 73. P. 216–220.


[6] Samokhvalov P., Artemyev M., Nabiev I. Basic principles and current trends in colloidal synthesis of highly luminescent semiconductor nanocrystals. // Chemistry - Eur. J. 2013. Vol. 19, № 5. P. 1534–1546.


[7] Dovzhenko D. et al. Enhancement of Spontaneous Emission from CdSe/CdS/ZnS Quantum Dots at the Edge of the Photonic Band Gap in a Porous Silicon Bragg Mirror// Physics Procedia. 2015. Vol. 73. P. 126–130.


[8] Linkov P. et al. Ultrasmall Quantum Dots: A Tool for in Vitro and in Vivo Fluorescence Imaging // Journal of Physics: Conference Series. 2017. Vol. 784. P. 12033.


[9] Zhao J.-Y. et al. Ultrasmall Magnetically Engineered Ag 2 Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles // Journal of the American Chemical Society. 2016. Vol. 138, № 6. P. 1893–1903.


[10] Wegner K.D., Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors // Chem. Soc. Rev. 2015. Vol. 44, № 14.


[11] Sparapani S. et al. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes // Journal of the American Chemical Society. 2010. Vol. 132, № 35. P. 12263–12272.


[12] Laronze-Cochard M. et al. Synthesis and biological evaluation of novel 4,5- bis(dialkylaminoalkyl)-substituted acridines as potent telomeric G-quadruplex ligands // European Journal of Medicinal Chemistry. 2009. Vol. 44, № 10. P. 3880– 3888.


[13] Burger A.M. The G-Quadruplex-Interactive Molecule BRACO-19 Inhibits Tumor Growth, Consistent with Telomere Targeting and Interference with Telomerase Function // Cancer Research. 2005. Vol. 65, № 4. P. 1489–1496.


[14] Müller S. et al. Small-molecule-mediated G-quadruplex isolation from human cells // Nature Chemistry. Nature Research, 2010. Vol. 2, № 12. P. 1095–1098.


[15] Artese A. et al. Toward the design of new DNA G-quadruplex ligands through rational analysis of polymorphism and binding data // European Journal of Medicinal Chemistry. 2013. Vol. 68. P. 139–149.


[16] Cho A.-N. et al. Acridine-based novel hole transporting material for high efficiency perovskite solar cells // J. Mater. Chem. A. The Royal Society of Chemistry, 2017. Vol. 5, № 16. P. 7603–7611.


[17] Krzymiński K. et al. 1H and 13C NMR spectra, structure and physicochemical features of phenyl acridine-9-carboxylates and 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulphonates – alkyl substituted in the phenyl fragment // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011. Vol. 78, № 1. P. 401–409.


[18] Jasieniak J., Califano M., Watkins S.E. Size-Dependent Valence and Conduction Band- Edge Energies of Semiconductor Nanocrystals // ACS Nano. 2011. Vol. 5, № 7. P. 5888–5902.


[19] Islam A. et al. Blue light-emitting devices based on 1,8-acridinedione derivatives // Synthetic Metals. 2003. Vol. 139, № 2. P. 347–353.


[20] Liu I.-S. et al. Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands // Journal of Materials Chemistry. 2008. Vol. 18, № 6. P. 675.


[21] Krivenkov V.A. et al. Surface ligands affect photoinduced modulation of the quantum dots optical performance // SPIE Proceedings. 2014. Vol. 9126. P. 91263N.


[22] Bang J. et al. Photoswitchable quantum dots by controlling the photoinduced electron transfers // Chemical Communications. 2012. Vol. 48, № 73. P. 9174.


[23] Linkov P. et al. Ultrasmall Quantum Dots for Fluorescent Bioimaging in vivo and in vitro // Optics and Spectroscopy. 2017. Vol. 122, № 1. P. 8–11.


[24] Dubal D.P., Holze R. A successive ionic layer adsorption and reaction (SILAR) method to induce Mn3O4 nanospots on CNTs for supercapacitors // New Journal of Chemistry. 2013. Vol. 37, № 2. P. 403.


[25] Samokhvalov P. et al. Photoluminescence quantum yield of CdSe-ZnS/CdS/ZnS core-multishell quantum dots approaches 100


[26] Chen Y. et al. “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. // Journal of the American Chemical Society. 2008. Vol. 130, № 15. P. 5026– 5027.


[27] Razgoniaeva N. et al. One-dimensional carrier confinement in “ giant ” CdS / CdSe excitonic nanoshells. 2017.


[28] Linkov P. et al. Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials. // Nanoscale. 2013. Vol. 5, № 19. P. 8781–8798.


[29] Jasieniak J. et al. Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots // The Journal of Physical Chemistry C. American Chemical Society, 2009. Vol. 113, № 45. P. 19468–19474.


[30] Linkov P. et al. High Quantum Yield CdSe/ZnS/CdS/ZnS Multishell Quantum Dots for Biosensing and Optoelectronic Applications // Materials Today: Proceedings. 2016. Vol. 3, № 2. P. 104–108.

Cited by
?
THE INFLUENCE OF HEALTH EDUCATION THROUGH SOCIAL MEDIA ON STUDENTS' KNOWLEDGE ABOUT ANEMIA
Wendy Puspitasari, JOURNAL OF HEALTH INNOVATION AND ENVIRONMENTAL EDUCATION, 2024
NEED ASSESSMENT FOR THE DEVELOPMENT OF E-RAPOR SEHATKU AS AN ADOLESCENTS HEALTH SCREENING APPLICATION
Laras Sitoayu et al., JURNAL PENELITIAN DAN PENGEMBANGAN PENDIDIKAN, 2023
TRIGGER FACTORS OF USING MOODLE OR E-LEARNING BY FACULTY OF MEDICINE AND HEALTH SCIENCES COLLEGE AND EDUCATION COLLEGE
Saida Affouneh et al., JOURNAL OF EDUCATION TECHNOLOGY, 2022
INTEREST AND SCIENCE PROCESS SKILLS IN SCIENCE EDUCATION BASED ON GENDER
R. S. Budiarti et al., JURNAL PENDIDIKAN DAN PENGAJARAN, 2022
COVID-19 PANDEMIC IN TEACHING ENGLISH FOR SPECIFIC PURPOSES: IMPACTS ON THE REMOTE TEACHING PROCESS OF FRONT OFFICE TEACHERS
Gede Oka Mahendra et al., JURNAL PENDIDIKAN BAHASA INGGRIS UNDIKSHA, 2022
Recommendations
STUDY OF INDONESIAN VACCINE DIPLOMACY AT BILATERAL, REGIONAL, AND MULTILATERAL LEVELS TO OVERCOME COVID-19 PANDEMIC
Astiwi Inayah et al., KNE SOCIAL SCIENCES, 2023
THE RESILIENCE FAMILIES OF INDONESIAN MIGRANT WORKERS (PMI)
Ani Agus Puspawati et al., KNE SOCIAL SCIENCES, 2023
GOVERNANCE CAPACITY OF CREATIVE ECONOMY OF COASTAL COMMUNITIES
Mayarni Mayarni et al., KNE SOCIAL SCIENCES, 2023
ETHNOECOLOGICAL ANALYSIS FOR IMPLEMENTATION OF INTER-ORGANIZATIONAL NETWORKS IN FOREST AND LAND FIRES POLICY
Febri Yuliani, KNE SOCIAL SCIENCES, 2023
QUICK UNDERSTANDING POLICY IMPLEMENTATION OF MERIT SYSTEM IN HUMAN RESOURCE APPARATUS MANAGEMENT IN DKI JAKARTA PROVINCE
Septiana Dwiputrianti et al., KNE SOCIAL SCIENCES, 2023
Powered by
Download
HTML
Cite
Share
statistics

1354 Abstract Views

417 PDF Downloads