Journal of Ophthalmic and Vision Research
ISSN: 2008-322X
The latest research in clinical ophthalmology and the science of vision.
Translaminar Pressure Difference and Ocular Perfusion Pressure in Glaucomatous Eyes with Different Optic Disc Sizes
Published date: Apr 29 2021
Journal Title: Journal of Ophthalmic and Vision Research
Issue title: April–June 2021, Volume 16, Issue 2
Pages: 171 – 177
Authors:
Abstract:
Purpose: Intracranial pressure (ICP) and ocular perfusion pressure (OPP) are both involved with the pathogenesis of glaucoma. The orbital ICP determines a retrolaminar counter pressure that is antagonistic to the intraocular pressure (IOP). The purpose of this study is to evaluate whether the translaminar pressure difference (TLPD) and the OPP varies in glaucoma patients with different optic disc sizes.
Methods: In this university hospital-based, observational, cross-sectional clinical study, all patients underwent an ophthalmic evaluation. Blood pressure, height, weight, and the results of retinal nerve fiber layer examination with optical coherence tomography examination were recorded. TLPD and OPP were calculated for each patient using proxy algorithms to attain indirect surrogate parameter values. Patients’ eyes were stratified into three quantiles according to optic disc sizes and the differences compared. Data from both eyes were used after using the appropriate correction for inter-eye dependency.
Results: The sample consisted of 140 eyes of 73 patients with primary open-angle glaucoma and suspects. Patients with large disc size presented with higher TLPD as compared to those with average and small-sized discs (2.4 ± 4.5, 2.8 ± 3.8, and 3.7 ± 4.7 mmHg for first, second, and third tertile, respectively (P < 0.000). OPP did not vary according to the optic disc size.
Conclusion: Glaucoma patients with larger optic discs have higher TLPD. The pathological significance of this finding warrants further investigation.
Keywords: Cerebrospinal Fluid Pressure, Glaucoma, Ocular Perfusion Pressure, Optic Disc, Translaminar Pressure
References:
1. Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, et al. Primary open-angle glaucoma. Nat Rev Dis Primers 2016;2:16067.
2. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmol 2008;115:763–768.
3. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci 2008;49:5412–5418.
4. Wang N, Yang D, Jonas JB. Low cerebrospinal fluid pressure in the pathogenesis of primary open-angle glaucoma: epiphenomenon or causal relationship? The Beijing Intracranial and Intraocular Pressure (iCOP) Study. J Glaucoma 2013;22:S11–S12.
5. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto, A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmol 2000;107:1287–1293.
6. Sehi M, Flanagan JG, Zeng L, Cook RJ, Trope GE. Relative change in diurnal mean ocular perfusion pressure: a risk factor for the diagnosis of primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2005;46:561–567.
7. Choi J, Kim KW, Jeong J, Cho HS, Lee CH, Kook MS. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci 2007;48:104–111.
8. Mansour AM. Racial variation of optic disc size. Ophthalmic Res 1991;23:67–72.
9. Varma R, Tielsch JM, Quigley HA, Hilton SC, Katz J, Spaeth GL, et al. Race-, age-, gender-, and refractive error related differences in normal optic disc. Arch Ophthalmol 1994;112:1068–1076.
10. Hoffmmann EM, Zangwill LM, Crowston JG, Weinreb RN. Optic disk size and glaucoma. Surv Ophthalmol 2007;52:32–49.
11. Xie X, Zhang X, Fu J, Wang H, Jonas JB, Peng X, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing intracranial and intraocular pressure (iCOP) study. Crit Care 2013;17:R162.
12. Jonas JB, Wang N, Wang YX, You QS, Xie X, Yang D, et al. Body height, estimated cerebrospinal fluid pressure and open-angle glaucoma. The Beijing Eye Study 2011. PLoS ONE 2014;9:e86678.
13. Marek B, Harris A, Kanakamedala P, Lee E, Amireskandari A, Carichino L, et al. Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure. Br J Ophthalmol 2014;98:721–725.
14. Jonas JB, Schmidt AM, Muller-Bergh JA, Schlötzer- Schrehardt U, Naumann GO. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 1992;33:2012–2018.
15. Quigley HA, Coleman AL, Dorman-Pease ME. Larger optic nerve heads have more nerve fibers in normal monkey eyes. Arch Ophthalmol 1991;109:1441–1443.
16. Jonas JB, Mardin CY, Schlötzer-Schrehardt U, Naumann GO. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci 1991;32:401–405.
17. Caprioli J, Miller JM. Optic disc rim area is related to disc size in normal subjects. Arch Ophthalmol 1987;105:1683– 1685.
18. Jonas JB, Budde WM, Lang P. Neuroretinal rim width ratios in morphological glaucoma diagnosis. Br J Ophthalmol 1998; 82:1366–1371.
19. Garway-Heath DF, Ruben ST, Viswanathan A, Hitchings RA. Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect. Br J Ophthalmol 1998;82:1118–1124.
20. Crowston JG, Hopley CR, Healey PR, Lee A, Mitchell P. The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the Blue Mountains Eye Study. Br J Ophthalmol 2004;88:766–770.
21. Volkov VV. Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh 1976;31:500–504.
22. Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH. Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 2002;43:3236–3242.
23. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005;24:39–73.
24. Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci 1998;39:1419–1428.
25. Gilland O. Normal cerebrospinal-fluid. N Engl J Med 1969;280:904–905.
26. Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol 1997;115:423–426.
27. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci 2014;55:3067–3073.
28. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmol 2010;117:259–266.
29. Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene I, Siesky B, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol 2014;2014:937360.
30. Jonas JB, Gusek G, Naumann GO. Macrodisks with physiologic macrocups (pseudo-glaucoma disks). Papillometric characteristics in 17 eyes. Klin Monbl Augenheilkd 1987;191:452–457.
31. Baneke AJ, Aubry J, Viswanathan AC, Plant GT. The role of intracranial pressure in glaucoma and therapeutic implications. Eye 2020;34:178–191.
32. Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam Study. Arch Ophthalmol 2007;125:805–812.
33. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, BESs Study Group. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmol 2008;115:85–93.
34. Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, et al. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol 2013;155:843–851.
35. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013;13:36–42.
36. Harris A, Werne A, Cantor LB. Vascular abnormalities in glaucoma: from population-based studies to the clinic? Am J Ophthalmol 2008;145:595–597.
37. Werne A, Harris A, Moore D, BenZion I, Siesky B. The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: risk factors for glaucoma? Surv Ophthalmol 2008;53:559–567.
38. Xu L, Wang YX, Jonas JB. Ocular perfusion pressure and glaucoma. Eye 2009;23:734–736.
39. Lyons MK, Meyer FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990;65:684–707.
40. Jonas JB, Wang N, Nangia V. Ocular perfusion pressure vs estimated trans-lamina cribrosa pressure difference in glaucoma: The Central India Eye and Medical Study (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2015;113:T6.
41. Kasahara N, Matuoka ML, Santos KS, Cruz NFS, Martins AR, Nigro S. Validation of an equation model to predict intracranial pressure in clinical studies. Innov Clin Neurosci 2018;15:27–29.
42. Killer HE. Compartment syndromes of the optic nerve and open-angle glaucoma. J Glaucoma 2013;22:S19–S20.