Journal of Ophthalmic and Vision Research

ISSN: 2008-322X

The latest research in clinical ophthalmology and the science of vision.

Recent Nanotechnological Trends in the Management of Microbial Keratitis

Published date: Dec 31 2024

Journal Title: Journal of Ophthalmic and Vision Research

Issue title: Oct–Dec 2024, Volume 19, Issue 4

Pages: 476 – 487

DOI: 10.18502/jovr.v19i4.14498

Authors:

Shraddha Jaiswalshraddha.jaiswal-rgitbt@bvp.edu.inRajiv Gandhi Institute of IT And Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India

Prabhavati Shinde prabhavati.shinde.ext@bharatividyapeeth.eduRajiv Gandhi Institute of IT And Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India

Vidya Talevidya.tale@bharatividyapeeth.eduRajiv Gandhi Institute of IT And Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India

Abstract:

Microbial keratitis (MK) is a sight-threatening ocular disease that needs rapid diagnosis and treatment to prevent more serious outcomes. The broad-spectrum topical antimicrobial treatment is currently the main pharmacological approach for MK management, yet its efficacy is increasingly challenged by evolving antimicrobial resistance, including multidrug resistance. Also, the ocular surface presents numerous challenges for standard topical drug delivery. The failure and ineffectiveness of current therapies have necessitated the development of novel therapeutic strategies to manage MK. With advances in nanotechnology in the biomedical field, various nanomaterials can be employed to control MK. The primary determinants of nanoparticles’ vast range of applications are their size, surface properties, and chemical makeup, which also happen to be the same elements that give rise to their poisonous and dangerous effects. In this study, we provide a perspective on the contact lens-associated corneal illnesses such as MK and explore how nanotechnology might help address this significant clinical issue. In addition, safety and toxicological concerns about the increasingly widespread use of contact lenses are also discussed.

Keywords: Antimicrobial Resistance, Contact Lenses, Corneal Diseases, Microbial Keratitis, Nanotechnology

References:

1. Rai M, Grupenmacher A, Ingle AP, Paralikar P, Gupta I, Alves M. Evolving nanotechnological trends in the management of mycotic keratitis. IET Nanobiotechnol 2019;13:8–14.

2. Khoo P, Cabrera-Aguas MP, Nguyen V, Lahra MM, Watson SL. Microbial keratitis in Sydney, Australia: Risk factors, patient outcomes, and seasonal variation. Graefes Arch Clin Exp Ophthalmol 2020;258:1745–1755.

3. Cariello AJ, Passos RM, Yu MC, Hofling-Lima AL. Microbial keratitis at a referral center in Brazil. Int Ophthalmol 2011;31:197–204.

4. Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea 2008;27:22–27.

5. Fan W, Han H, Chen Y, Zhang X, Gao Y, Li S, et al. Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Deliv Transl Res 2021;11:1352–1375.

6. Mercan DA, Niculescu AG, Grumezescu AM. Nanoparticles for antimicrobial agents delivery-an up-to-date review. Int J Mol Sci 2022;23:13862.

7. Ting DS, Ho CS, Deshmukh R, Said DG, Dua HS. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye (Lond) 2021;35:1084–1101.

8. Ma L, Rhee MK. Contact lenses and infectious keratitis. Curr Ophthalmol Rep 2018;6:115–125.

9. Hatami H, Ghaffari Jolfayi A, Ebrahimi A, Golmohammadi S, Zangiabadian M, Nasiri MJ. Contact lens associated bacterial keratitis: Common organisms, antibiotic therapy, and global resistance trends: A systematic review. Front Ophthalmol (Lausanne) 2021;1:759271.

10. Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety assessment of nanomaterials to eyes: An important but neglected issue. Adv Sci (Weinh) 2019;6:1802289.

11. Sızmaz S, Bingöllü S, Erdem E, Kibar F, Koltaş S, Yağmur M, et al. Polymicrobial infection of the cornea due to contact lens wear. Turk J Ophthalmol 2016;46:83–86.

12. Fanselow N, Sirajuddin N, Yin XT, Huang AJ, Stuart PM. Acanthamoeba keratitis, pathology, diagnosis and treatment. Pathogens 2021;10:1–11.

13. Ferreira CS, Figueira L, Moreira-Gonçalves N, Moreira R, Torrão L, Falcão-Reis F. Clinical and microbiological profile of bacterial microbial keratitis in a Portuguese tertiary referral center-Where are we in 2015? Eye Contact Lens 2018;44:15–20.

14. Castano G, Elnahry AG, Mada PK. Fungal keratitis. StatPearls Publishing; 2023.

15. Cheung NN, Cheng YY, van Duinen SG, Houbraken J, Verweij PE, Gooskens J. Contact lens-related fungal keratitis. Lancet Infect Dis 2020;20:1100.

16. Gopinathan U, Sharma S, Garg P, Rao GN. Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: Experience of over a decade. Indian J Ophthalmol 2009;57:273–279.

17. Mabrouk NA, Abdelkader MF, Abdelhakeem MA, Mourad KM, Abdelghany AA. Epidemiology, clinical profile and treatment outcomes of bacterial and fungal keratitis. Int Ophthalmol 2022;42:1401–1407.

18. Bispo PJ, Sahm DF, Asbell PA. A systematic review of multi-decade antibiotic resistance data for ocular bacterial pathogens in the United States. Ophthalmol Ther 2022;11:503–520.

19. Lin L, Mei F, Liao J, Yang Y, Duan F, Lin X. Nineyear analysis of isolated pathogens and antibiotic susceptibilities of infectious endophthalmitis from a large referral eye center in southern China. Infect Drug Resist 2020;13:493–500.

20. Das S, Samantaray R, Mallick A, Sahu SK, Sharma S. Types of organisms and in-vitro susceptibility of bacterial isolates from patients with microbial keratitis: A trend analysis of 8 years. Indian J Ophthalmol 2019;67:49–53.

21. Tuft S, Evans J, Gordon I, Leck A, Stone N, Neal T, et al. Antimicrobial resistance in topical treatments for microbial keratitis: protocol for a systematic review and meta-analysis. BMJ Open. 2023 Mar;13(3):e069338.

22. Ahmed NH, Mishra D, Rathod P, Satpathy G, Titiyal JS, Tandon R, et al. Spectrum of bacterial keratitis in North India: A retrospective analysis of six years at a tertiary care eye center. Indian J Ophthalmol 2022;70:1982–1989.

23. Hui A, Willcox M, Jones L. In vitro and in vivo evaluation of novel ciprofloxacin-releasing silicone hydrogel contact lenses. Invest Ophthalmol Vis Sci 2014;55:4896–4904.

24. Araby E, Elbastawisy H, El-Tablawy S. Combating bacterial adhesion and protein deposition on cosmetic contact lenses using zinc oxide nanoparticles. Egypt J Radiation Sci Appl 2018;31:97–109.

25. Shen C, Han Y, Wang B, Tang J, Chen H, Lin Q. Ocular biocompatibility evaluation of POSS nanomaterials for biomedical material applications. RSC Adv 2015;5:53782– 53788.

26. Hetta HF, Ramadan YN, Al-Harbi AI, A Ahmed E, Battah B, Abd Ellah NH, et al. Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines 2023;11:413.

27. Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023;354:465–488.

28. Huang X, Li L, Chen Z, Yu H, You X, Kong N, et al. Nanomedicine for the detection and treatment of ocular bacterial infections. Adv Mater 2023;35:e2302431.

29. Zhang L, Ji X, Su Y, Zhai X, Xu H, Song B, et al. Fluorescent silicon nanoparticles-based nanotheranostic agents for rapid diagnosis and treatment of bacteriainduced keratitis. Nano Res 2021;14:52–58.

30. Zhao Z, Yan R, Yi X, Li J, Rao J, Guo Z, et al. Bacteriaactivated theranostic nanoprobes against methicillinresistant Staphylococcus aureus infection. ACS Nano 2017;11:4428–4438.

31. Capeletti LB, Oliveira JF, Loiola LM, Galdino FE, Silva Santos DE, Soares TA, et al. Biomedical applications: Gram-negative bacteria targeting mediated by carbohydrate–carbohydrate interactions induced by surface-modified nanoparticles. Adv Funct Mater 2019;29.

32. Qi P, Chen X, Sun Y, Zhang D. Sensors and actuators B: Chemical multivalent glycosylated Cu : CdS quantum dots as a platform for rapid bacterial discrimination and detection. Sens Actuators B Chem 2018;2018:431–436.

33. Zheng L, Qi P, Zhang D. Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots. Sens Actuators B Chem 2019; 286:206–213.

34. Wang H, Zhou S, Guo L, Wang Y, Feng L. Intelligent hybrid hydrogels for rapid in situ detection and photothermal therapy of bacterial infection. ACS Appl Mater Interfaces 2020;12:39685–3994.

35. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017;7:281–291.

36. Xiao A, Dhand C, Leung CM, Beuerman RW, Ramakrishna S, Lakshminarayanan R. Strategies to design antimicrobial contact lenses and contact lens cases. J Mater Chem B 2018;6:2171–2186.

37. Mittal P, Saharan A, Verma R, Altalbawy FM, Alfaidi MA, Batiha GE, et al. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res Int 2021;2021:8844030.

38. Dhumal D, Maron B, Malach E, Lyu Z, Ding L, Marson D, et al. Dynamic self-assembling supramolecular dendrimer nanosystems as potent antibacterial candidates against drug-resistant bacteria and biofilms. Nanoscale 2022;14:9286–9296.

39. Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: A new frontier in nanomedicine delivery. Pharm Res 2016;33:1055–1073.

40. Hendiger EB, Padzik M, Sifaoui I, Reyes-Batlle M, López- Arencibia A, Zyskowska D, et al. Silver nanoparticles conjugated with contact lens solutions may reduce the risk of acanthamoeba keratitis. Pathogens 2021;10:1–13.

41. Liu Z, Chauhan A. Gold nanoparticles-loaded contact lenses for laser protection and Meibomian Gland Dysfunction (MGD) dry eye treatment. Colloids Surf A Physicochem Eng Asp 2022;635:1–31.

42. Dutta D, Kharaghani D, Willcox M, Soo KI. Copper and silver nanoparticle loaded antimicrobial contact lenses. Cont Lens Anterior Eye 2019;42:11–12.

43. Tran NP, Ting CC, Lin CH, Yang MC. A novel approach to increase the oxygen permeability of soft contact lenses by incorporating silica sol. Polymers (Basel) 2020;12:2087.

44. Luo W, Taleb A. Large-scale synthesis route of TiO2 nanomaterials with controlled morphologies using hydrothermal method and TiO2 aggregates as precursor. Nanomaterials (Basel) 2021;11:365.

45. Lavande S, Jaiswal S, Deore R, Pawar J, Tale V. Metal nanoparticle synthesis using fruit extracts as reducing agents and comparative studies with a chemical reducing agent. Biosci Biotech Res Asia 2022;19:487–496.

46. Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, et al. Cytotoxicity of metal-based nanoparticles: From mechanisms and methods of evaluation to pathological manifestations. Adv Sci (Weinh) 2022;9:e2106049.

47. Meretoudi A, Banti CN, Raptis PK, Papachristodoulou C, Kourkoumelis N, Ikiades AA, et al. Silver nanoparticles from oregano leaves’ extracts as antimicrobial components for non-infected hydrogel contact lenses. Int J Mol Sci 2021;22:3539.

48. Niu P, Wu Y, Zeng F, Zhang S, Liu S, Gao H. Development of nanodrug-based eye drops with good penetration properties and ROS responsiveness for controllable release to treat fungal keratitis. NPG Asia Mater 2023;15:31.

49. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. Liposomes as an ocular delivery system of fluconazole: Invitro studies. Acta Ophthalmol 2010;88:901–904.

50. Kharaghani D, Dutta D, Gitigard P, Tamada Y, Katagiri A, Phan DN, et al. Development of antibacterial contact lenses containing metallic nanoparticles. Polym Test 2019;79:79.

51. Khan SA, Shahid S, Mahmood T, Lee CS. Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 2021;128:262–276.

52. Wekwejt M, Swieczko-Zurek B. The creation of an antimicrobial coating on contact lenses by the use of nanocopper. Int J New Technol Res 2017;3:103–107.

53. Shayani Rad M, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Preparation, characterization, and evaluation of zinc oxide nanoparticles suspension as an antimicrobial media for daily use soft contact lenses. Curr Eye Res 2020;45:931–939.

54. Tuby R, Gutfreund S, Perelshtein I, Mircus G, Ehrenberg M, Mimouni M, et al. Fabrication of a stable and efficient antibacterial nanocoating of Zn-CuO on contact lenses. ChemNanoMat 2016;2:547–551.

55. Liu G, Li K, Wang H, Ma L, Yu L, Nie Y. Stable fabrication of zwitterionic coating based on copper-phenolic networks on contact lens with improved surface wettability and broad-spectrum antimicrobial activity. ACS Appl Mater Interfaces 2020;12:16125–16136.

56. Mehta P, Al-Kinani AA, Arshad MS, Singh N, van der Merwe SM, Chang MW, et al. Engineering and development of chitosan-based nanocoatings for ocular contact lenses. J Pharm Sci 2019;108:1540–1551.

57. Pakzad Y, Fathi M, Omidi Y, Mozafari M, Zamanian A. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int J Biol Macromol 2020;159:117– 128.

58. Garhwal R, Shady SF, Ellis EJ, Ellis JY, Leahy CD, McCarthy SP, et al. Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Invest Ophthalmol Vis Sci 2012;53:1341–1352.

59. Qu W, Busscher HJ, van der Mei HC, Hooymans JM. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses. Cornea 2013;32:326–331.

60. Desai AR, Maulvi FA, Pandya MM, Ranch KM, Vyas BA, Shah SA, et al. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: In vitro and in vivo evaluation. Biomater Sci 2018;6:1580–1591.

61. Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016;10:836–860.

62. Banti CN, Kapetana M, Papachristodoulou C, Raptopoulou CP, Psycharis V, Zoumpoulakis P, et al. Hydrogels containing water soluble conjugates of silver(I) ions with amino acids, metabolites or natural products for non infectious contact lenses. Dalton Trans 2021;50:13712–13727.

63. M de Araújo FB, Morais VC, M de Oliveira BT, G de Lima KY, Gomes VT, G do Amaral IP, et al. Multipurpose disinfecting solutions only partially inhibit the development of ocular microbes biofilms in contact lens storage cases. Middle East Afr J Ophthalmol 2021;28:116– 122.

64. Kaja S, Payne AJ, Naumchuk Y, Koulen P. Quantification of lactate dehydrogenase for cell viability testing using cell lines and primary cultured astrocytes. Curr Protoc Toxicol 2017;72 :2.26.1–2.26.10.

65. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scaleup technologies: Feasibilities and challenges. AAPS PharmSciTech 2014;15:1527–1534.

66. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv 2020;10:27835–27855.

67. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem 2018;6:1–15.

68. Hoyo J, Ivanova K, Guaus E, Tzanov T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 2019;543:114–121.

69. Bin Sahadan MY, Tong WY, Tan WN, Leong CR, Bin Misri MN, Chan M, et al. Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens. Exp Eye Res 2019;178:10–14.

70. Guo Q, Jia L, Qinggeletu Zhang R, Yang X. In vitro and in vivo evaluation of ketotifen-gold nanoparticles laden contact lens for controlled drug delivery to manage conjunctivitis. J Drug Deliv Sci Technol 2021;64:102538.

71. Ma L, Li K, Xia J, Chen C, Liu Y, Lang S, et al. Commercial soft contact lenses engineered with zwitterionic silver nanoparticles for effectively treating microbial keratitis. J Colloid Interface Sci 2022;610:923–933.

Download
HTML
Cite
Share
statistics

0 Abstract Views

30 PDF Downloads