Journal of Ophthalmic and Vision Research
ISSN: 2008-322X
The latest research in clinical ophthalmology and the science of vision.
Pachychoroid Spectrum Disorders: An Updated Review
Published date: Apr 19 2023
Journal Title: Journal of Ophthalmic and Vision Research
Issue title: April–June 2023, Volume 18, Issue 2
Pages: 212 – 229
Authors:
Abstract:
Pachychoroid disease spectrum is a recent term that has been associated with an increasing number of phenotypes. This review discusses updated findings for each of the typical pachychoroid entities (central serous chorioretinopathy, pachychoroid pigment epitheliopathy, pachychoroid neovasculopathy, polypoidal choroidal vasculopathy, peripapillary pachychoroid syndrome, and focal choroidal excavation), as well as two relatively new additions (peripapillary pachychoroid neovasculopathy and peripheral exudative hemorrhagic chorioretinopathy). Here, we discuss the potential pathogenic mechanisms for these diseases and relevant imaging updates. Finally, we argue for a consistent classification scheme for these entities.
Keywords: Central Serous Chorioretinopathy, Choroid, Pachychoroid, Focal Choroidal Excavation, Pachychoroid Neovasculopathy, Peripapillary Pachychoroid Syndrome, Peripapillary Pachychoroid Neovasculopathy, Polypoidal Choroidal Vasculopathy, Retinopathy
References:
1. Borooah S, Sim PY, Phatak S, Moraes G, Wu CY, Cheung CMG, et al. Pachychoroid spectrum disease. Acta Ophthalmol 2021;99:e806–e822.
2. Yamashiro K, Yanagi Y, Koizumi H, Matsumoto H, Cheung CMG, Gomi F, et al. Relationship between pachychoroid and polypoidal choroidal vasculopathy. J Clin Med 2022;11.
3. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. Pachychoroid disease. Eye 2019;33:14–33.
4. Chang YC, Cheng CK. Difference between pachychoroid and nonpachychoroid polypoidal choroidal vasculopathy and their response to anti-vascular endothelial growth factor therapy. Retina 2020;40:1403–1411.
5. Vadalà M, Castellucci M, Guarrasi G, Cillino G, Bonfiglio VME, Casuccio A, et al. Polypoidal choroidal vasculopathy in pachychoroid: Combined treatment with photodynamic therapy and aflibercept. Int Ophthalmol 2022;42:601–610.
6. Shimizu Y, Miyata M, Ooto S, Miyake M, Mori Y, Tamura H, et al. Pachychoroid-phenotype effects on 5-year visual outcomes of anti-VEGF monotherapy in polypoidal choroidal vasculopathy. Acta Ophthalmol 2022;100:e943–e949.
7. Manayath GJ, Balan R, Ranjan R, Saravanan VR, Narendran V. Posterior choroidal fluid loculation in central serous chorioretinopathy presenting as a choroidal elevation: A rare pachychoroid phenotype. Eur J Ophthalmol 2022;32:1610–1618.
8. Spaide RF, Gemmy Cheung CM, Matsumoto H, Kishi S, Boon CJF, van Dijk EHC, et al. Venous overload choroidopathy: A hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res 2022;86:100973.
9. Hanumunthadu D, Tan ACS, Singh SR, Sahu NK, Chhablani J. Management of chronic central serous chorioretinopathy. Indian J Ophthalmol 2018;66:1704– 1714.
10. Kumar Sahoo N, Lupidi M, Goud A, Gangakhedkar S, Cardillo Piccolino F, Chhablani J. One-year outcome of cystoid macular degeneration in central serous chorioretinopathy. Eur J Ophthalmol 2022;32:2347– 2354.
11. Kretz FT, Beger I, Koch F, Nowomiejska K, Auffarth GU, Koss MJ. Randomized clinical trial to compare micropulse photocoagulation versus half-dose verteporfin photodynamic therapy in the treatment of central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina 2015;46:837–843.
12. Chan WM, Lai TY, Lai RY, Tang EW, Liu DT, Lam DS. Safety enhanced photodynamic therapy for chronic central serous chorioretinopathy: One-year results of a prospective study. Retina 2008;28:85–93.
13. Bousquet E, Beydoun T, Rothschild PR, Bergin C, Zhao M, Batista R, et al. Spironolactone for nonresolving central serous chorioretinopathy: A randomized controlled crossover study. Retina 2015;35:2505–2515.
14. Schwartz R, Habot-Wilner Z, Martinez MR, Nutman A, Goldenberg D, Cohen S, et al. Eplerenone for chronic central serous chorioretinopathy–A randomized controlled prospective study. Acta Ophthalmologica 2017;95:e610–e618.
15. Chung YR, Seo EJ, Lew HM, Lee KH. Lack of positive effect of intravitreal bevacizumab in central serous chorioretinopathy: Meta-analysis and review. Eye 2013;27:1339–1346.
16. Ji S, Wei Y, Chen J, Tang S. Clinical efficacy of anti-VEGF medications for central serous chorioretinopathy: A metaanalysis. Int J Clin Pharm 2017;39:514–521.
17. Karacorlu M, Ersoz MG, Arf S, Hocaoglu M, Sayman Muslubas I. Long-term follow-up of pachychoroid pigment epitheliopathy and lesion characteristics. Graefes Arch Clin Exp Ophthalmol 2018;256:2319–2326.
18. Sakurada Y, Fragiotta S, Leong BCS, Parikh R, Hussnain SA, Freund KB. Relationship between choroidal vascular hyperpermeability, choriocapillaris flow density, and choroidal thickness in eyes with pachychoroid pigment epitheliopathy. Retina 2020;40:657–662.
19. Tagawa M, Ooto S, Yamashiro K, Tamura H, Oishi A, Uji A, et al. Choriocapillaris flow deficit in a pachychoroid spectrum disease using en face optical coherence tomography angiography averaging. Plos One 2022;17:e0271747.
20. Sagar P, Sodhi PS, Roy S, Takkar B, Azad SV. Pachychoroid neovasculopathy: A comparative review on pathology, clinical features, and therapy. Eur J Ophthalmol 2021:11206721211036290.
21. Demirel S, Yanik O, Ozcan G, Batioglu F, Ozmert E. A comparative study on the choroidal vascularity index and the determination of cut-off values in the pachychoroid spectrum diseases. Jpn J Ophthalmol 2021;65:482–491.
22. Lee M, Lee H, Kim HC, Chung H. Changes in Stromal and luminal areas of the choroid in pachychoroid diseases: Insights into the pathophysiology of pachychoroid diseases. Invest Ophthalmol Vis Sci 2018;59:4896–4908.
23. Matsumoto H, Kishi S, Mukai R, Akiyama H. Remodeling of macular vortex veins in pachychoroid neovasculopathy. Sci Rep 2019;9:14689.
24. Fung AT, Yannuzzi LA, Freund KB. Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular agerelated macular degeneration. Retina 2012;32:1829–1837.
25. Cho SC, Ryoo NK, Ahn J, Woo SJ, Park KH. Association of irregular pigment epithelial detachment in central serous chorioretinopathy with genetic variants implicated in agerelated macular degeneration. Sci Rep 2020;10:1203.
26. Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, et al. Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep 2015;5:16204.
27. Hosoda Y, Miyake M, Yamashiro K, Ooto S, Takahashi A, Oishi A, et al. Deep phenotype unsupervised machine learning revealed the significance of pachychoroid features in etiology and visual prognosis of age-related macular degeneration. Sci Rep 2020;10:18423.
28. Kim YH, Lee B, Kang E, Oh J. Clustering of eyes with agerelated macular degeneration or pachychoroid spectrum diseases based on choroidal thickness profile. Sci Rep 2021;11:4999.
29. Terao N, Koizumi H, Kojima K, Yamagishi T, Yamamoto Y, Yoshii K, et al. Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Sci Rep 2018;8:10520.
30. Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M, et al. Intraocular vascular endothelial growth factor levels in pachychoroid neovasculopathy and neovascular agerelated macular degeneration. Invest Ophthalmol Vis Sci 2017;58:292–298.
31. Yamada C, Mukai R, Shinohara Y, Matsumoto H, Akiyama H. Occlusion of a vortex vein after treatment with halffluence photodynamic therapy combined with intravitreal aflibercept injection for pachychoroid neovasculopathy. Cureus 2022;14.
32. Su Y, Zhang X, Gan Y, Zeng Y, Wen F. Detection of pachychoroid neovasculopathy with optical coherence tomography angiography versus dye angiography imaging. Photodiagnosis Photodyn Ther 2022;40:103126.
33. Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB. Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol 2015;160:1243–1254.e1242.
34. Jung BJ, Kim JY, Lee JH, Baek J, Lee K, Lee WK. Intravitreal aflibercept and ranibizumab for pachychoroid neovasculopathy. Sci Rep 2019;9:2055.
35. Padron-Perez N, Arias L, Rubio M, Lorenzo D, Garcia-Bru P, Catala-Mora J, et al. Changes in choroidal thickness after intravitreal injection of anti-vascular endothelial growth factor in pachychoroid neovasculopathy. Invest Ophthalmol Vis Sci 2018;59:1119–1124.
36. Lee JH, Lee WK. One-year results of adjunctive photodynamic therapy for type 1 neovascularization associated with thickened choroid. Retina 2016;36:889– 895.
37. Yanik O, Demirel S, Baioglu F, Ozmert E. A comparative study of short-term vascular and stromal alterations of the choroid following half-fluence photodynamic therapy in pachychoroid neovasculopathy and chronic central serous chorioretinopathy. Life 2022;12.
38. Kitajima Y, Maruyama-Inoue M, Ito A, Sato S, Inoue T, Yamane S, et al. One-year outcome of combination therapy with intravitreal anti-vascular endothelial growth factor and photodynamic therapy in patients with pachychoroid neovasculopathy. Graefes Arch Clin Exp Ophthalmol 2020;258:1279–1285.
39. Matsumoto H, Mukai R, Kikuchi Y, Morimoto M, Akiyama H. One-year outcomes of half-fluence photodynamic therapy combined with intravitreal injection of aflibercept for pachychoroid neovasculopathy without polypoidal lesions. Jnp J Ophthalmol 2020;64:203–209.
40. Tsujikawa A, Sasahara M, Otani A, Gotoh N, Kameda T, Iwama D, et al. Pigment epithelial detachment in polypoidal choroidal vasculopathy. Am J Ophthalmol 2007;143:102–111.
41. Pereira A, Aldrees S, Pimentel MC, Yan P. Updated review: Optical coherence tomography findings of the pachychoroid disease spectrum. Can J Ophthalmol 2022.
42. Demirel S, Guran Begar P, Yanik O, Batioglu F, Ozmert E. Visualization of type-1 macular neovascularization secondary to pachychoroid spectrum diseases: A Comparative study for sensitivity and specificity of indocyanine green angiography and optical coherence tomography angiography. Diagnostics 2022;12.
43. Kishi S, Matsumoto H. A new insight into pachychoroid diseases: Remodeling of choroidal vasculature. Graefes Arch Clin Exp Ophthalmol 2022;260:3405–3417.
44. Zhan Z, Sun L, Jin C, Yang Y, Hu A, Tang M, et al. Comparison between non-visualized polyps and visualized polyps on optical coherence tomography angiography in polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 2019;257:2349–2356.
45. Dansingani KK, Gal-Or O, Sadda SR, Yannuzzi LA, Freund KB. Understanding aneurysmal type 1 neovascularization (polypoidal choroidal vasculopathy): A lesson in the taxonomy of ’expanded spectra’ - A review. Clin Exp Ophthalmol 2018;46:189–200.
46. Siedlecki J, Klaas JE, Keidel LF, Asani B, Luft N, Priglinger SG, et al. Progression of pachychoroid neovasculopathy into aneurysmal type 1 choroidal neovascularization or polypoidal choroidal vasculopathy. Ophthalmol Retina 2022;6:807–813.
47. Bakthavatsalam M, Ng DS, Lai FH, Tang FY, Brelen ME, Tsang CW, et al. Choroidal structures in polypoidal choroidal vasculopathy, neovascular age-related maculopathy, and healthy eyes determined by binarization of swept source optical coherence tomographic images. Graefes Arch Clin Exp Ophthalmol 2017;255:935–943.
48. Fan Q, Cheung CMG, Chen LJ, Yamashiro K, Ahn J, Laude A, et al. Shared genetic variants for polypoidal choroidal vasculopathy and typical neovascular age-related macular degeneration in East Asians. J Hum Genet 2017;62:1049– 1055.
49. Baek J, Lee JH, Jung BJ, Kook L, Lee WK. Morphologic features of large choroidal vessel layer: Age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2018;256:2309–2317.
50. Wang W, He M, Zhang X. Combined intravitreal anti- VEGF and photodynamic therapy versus photodynamic monotherapy for polypoidal choroidal vasculopathy: A systematic review and meta-analysis of comparative studies. PLoS One 2014;9:e110667.
51. Sakurada Y, Sugiyama A, Tanabe N, Kikushima W, Kume A, Iijima H. Choroidal thickness as a prognostic factor of photodynamic therapy with aflibercept or ranibizumab for polypoidal choroidal vasculopathy. Retina 2017;37:1866– 1872.
52. Montorio D, Giordano M, Concilio M, Cennamo G. Structural and vascular changes of the choroid in polypoidal choroidal vasculopathy after intravitreal antivegf therapy. Ophthalmologica 2022;245:173–178.
53. Kumawat D, Bhayana A, Kumar V. Pachychoroid spectrum disorders: A review of clinical features and management. DJO 2019;30.
54. Lee WK, Baek J, Dansingani KK, Lee JH, Freund KB. Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina 2016;36:S73–S82.
55. Hubschman S, Hou K, Sarraf D, Tsui I. An unusual presentation of peripapillary pachychoroid syndrome. Am J Ophthalmol Case Rep 2022;25:101338.
56. Phasukkijwatana N, Freund KB, Dolz-Marco R, Al-Sheikh M, Keane PA, Egan CA, et al. Peripapillary pachychoroid syndrome. Retina 2018;38:1652–1667.
57. Xu D, Garg E, Lee K, Sakurada Y, Amphornphruet A, Phasukkijwatana N, et al. Long-term visual and anatomic outcomes of patients with peripapillary pachychoroid syndrome. Br J Ophthalmol 2022;106:576–581.
58. Iovino C, Peiretti E, Tatti F, Querques G, Borrelli E, Sacconi R, et al. Photodynamic therapy as a treatment option for peripapillary pachychoroid syndrome: A pilot study. Eye 2022;36:716–723.
59. Barequet D, Iglicki M, Meshi A, Loewenstein A, Goldstein M, Zur D. Acquired vitelliform lesions: A novel finding in eyes with peripapillary pachychoroid syndrome. Retina 2022;42:949–956.
60. Bouzika P, Georgalas I, Sotirianakou ME, Karamaounas A, Symeonidis C, Tyrlis K, et al. Peripapillary pachychoroid syndrome (PPS): Diagnosing and treating a rare entity. Case Rep Ophthalmol Med 2022;2022:9124630.
61. Sen P, Sreenivasan J, Maitra P. A case of peripapillary pachychoroid syndrome treated with anti-vascular endothelial growth factor injections. Indian J Ophthalmol- Case Rep 2021;1:346.
62. Alonso-Martin B, de-Lucas-Viejo B, Gimeno-Carrero M, Ferro-Osuna M, Sambricio J. Diagnosis by multimodal imaging in peripapillary pachychoroid syndrome: A case report. Arch Soc Esp Oftalmol 2020;95:248–253.
63. Manayath GJ, Verghese S, Ranjan R, Narendran V. Photodynamic therapy for peripapillary pachychoroid syndrome-a case report. Digit J Ophthalmol 2022;28:7– 11.
64. Mohabati D, Hoyng CB, Yzer S, Boon CJF. Clinical characteristics and outcome of posterior cystoid macular degeneration in chronic central serous chorioretinopathy. Retina 2020;40:1742–1750.
65. Yzer S, Pothof A, Martinez J, Behar-Cohen FF. Treatment of peripapillary pachychoroid syndrome. Investig Ophthalmol Vis Sci. 2022;63:3765–F0186-3765–F0186.
66. Pothof AB, Fernandez-Avellaneda P, Behar-Cohen F, Ciriano JPM, Yzer S. Potential treatment for peripapillary pachychoroid syndrome. Retin Cases Br Rep 2022.
67. Verma S, Kumar V, Azad S, Bhayana AA, Surve A, Kumar S, et al. Focal choroidal excavation: Review of literature. Br J Ophthalmol 2021;105:1043–1048.
68. Chung H, Byeon SH, Freund KB. Difference between pachychoroid and nonpachychoroid polypoidal choroidal vasculopathy and their response to anti-vascular endothelial growth factor therapy. Retina 2017;37:199– 221.
69. Ellabban AA, Tsujikawa A, Ooto S, Yamashiro K, Oishi A, Nakata I, et al. Focal choroidal excavation in eyes with central serous chorioretinopathy. Am J Ophthalmol 2013;156:673–683.
70. Lim FP, Wong CW, Loh BK, Chan CM, Yeo I, Lee SY, et al. Prevalence and clinical correlates of focal choroidal excavation in eyes with age-related macular degeneration, polypoidal choroidal vasculopathy and central serous chorioretinopathy. Br J Ophthalmol 2016;100:918–923.
71. Shinojima A, Kawamura A, Mori R, Yuzawa M. Morphologic features of focal choroidal excavation on spectral domain optical coherence tomography with simultaneous angiography. Retina 2014;34:1407–1414.
72. Dhodapkar RM, Spadaro JZ, Adelman RA. A case of extrafoveal focal choroidal excavation. Am J Ophthalmol Case Rep 2022;27:101682.
73. Seo EJ, Moon TH, Kim DY, Chae JB. Choroidal inflammation and choriocapillaris ischemia in focal choroidal excavation in comparison to pachychoroid nevascularopathy. Retina 2021;41:987–996.
74. Margolis R, Mukkamala SK, Jampol LM, Spaide RF, Ober MD, Sorenson JA, et al. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol 2011;129:1320– 1325.
75. Capellan P, Gonzalez LA, Abdallah Mahrous M, Weiss SJ, Botsford B, Lenis TL, et al. Primary and secondary focal choroidal excavation morphologic phenotypes, associated ocular disorders and prognostic implications. Br J Ophthalmol 2021;107:373–379.
76. Wakabayashi Y, Nishimura A, Higashide T, Ijiri S, Sugiyama K. Unilateral choroidal excavation in the macula detected by spectral-domain optical coherence tomography. Acta Ophthalmol 2010;88:e87–e91.
77. Kumano Y, Nagai H, Enaida H, Ueno A, Matsui T. Symptomatic and morphological differences between choroidal excavations. Optom Vis Sci 2013;90:e110–e118.
78. Gan Y, Ji Y, Zuo C, Su Y, Liao N, Zhang X, et al. Correlation between focal choroidal excavation and underlying retinochoroidal disease: A pathological hypothesis from clinical observation. Retina 2022;42:348–356.
79. Montero Hernandez J, Remolí Sargues L, Monferrer Adsuara C, Castro Navarro V, Navarro Palop C, Cervera Taulet E. Peripapillary pachychoroid neovasculopathy: A novel entity. Eur J Ophthalmol 2022;32:NP149–NP153.
80. Shroff D, Sharma M, Chhablani J, Gupta P, Gupta C, Shroff C. Peripheral exudative hemorrhagic chorioretinopathy-A new addition to the spectrum of pachychoroid disease? Retina 2021;41:1518–1525.
81. Mantel I, Schalenbourg A, Zografos L. Peripheral exudative hemorrhagic chorioretinopathy: Polypoidal choroidal vasculopathy and hemodynamic modifications. Am J Ophthalmol 2012;153:910–922.e912.
82. Goldman DR, Freund KB, McCannel CA, Sarraf D. Peripheral polypoidal choroidal vasculopathy as a cause of peripheral exudative hemorrhagic chorioretinopathy: A report of 10 eyes. Retina 2013;33:48–55.
83. Izumi T, Maruko I, Kawano T, Sakaihara M, Iida T. Morphological differences of choroid in central serous chorioretinopathy determined by ultra-widefield optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2022;260:295–301.
84. Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectraldomain optical coherence tomography. Ophthalmology 2013;120:1901–1908.
85. Pinarci EY, Kilic I, Bayar SA, Sizmaz S, Akkoyun I, Yilmaz G. Clinical characteristics of peripheral exudative hemorrhagic chorioretinopathy and its response to bevacizumab therapy. Eye 2013;27:111–112.
86. Shields CL, Salazar PF, Mashayekhi A, Shields JA. Peripheral exudative hemorrhagic chorioretinopathy simulating choroidal melanoma in 173 eyes. Ophthalmology 2009;116:529–535.
87. Singh RB, Perepelkina T, Testi I, Young BK, Mirza T, Invernizzi A, et al. Imaging-based assessment of choriocapillaris: A comprehensive review. Semin Ophthalmol 2022:1–22.
88. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 2016;36:499–516.
89. Spaide RF, Ledesma-Gil G, Gemmy Cheung CM. Intervortex venous anastomosis in pachychoroid-related disorders. Retina 2021;41:997–1004.
90. Brinks J, van Dijk EHC, Meijer OC, Schlingemann RO, Boon CJF. Choroidal arteriovenous anastomoses: A hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. Acta Ophthalmol 2022;100:946– 959.
91. Schrodl F, Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, et al. Lymphatic markers in the adult human choroid. Invest Ophthalmol Vis Sci 2015;56:7406– 7416.
92. Spaide RF, Ledesma-Gil G. Choriocapillaris vascular parameters in normal eyes and those with pachychoroid with and without disease. Retina 2021;41:679–685.
93. Jeong S, Kang W, Noh D, van Hemert J, Sagong M. Choroidal vascular alterations evaluated by ultra-widefield indocyanine green angiography in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2022;260:1887–1898.
94. Bacci T, Oh DJ, Singer M, Sadda S, Freund KB. Ultrawidefield indocyanine green angiography reveals patterns of choroidal venous insufficiency influencing pachychoroid disease. Invest Ophthalmol Vis Sci 2022;63:17.
95. Imanaga N, Terao N, Nakamine S, Tamashiro T, Wakugawa S, Sawaguchi K, et al. Scleral thickness in central serous chorioretinopathy. Ophthalmol Retina 2021;5:285–291.
96. Buckhurst HD, Gilmartin B, Cubbidge RP, Logan NS. Measurement of scleral thickness in humans using anterior segment optical coherent tomography. PLoS One 2015;10:e0132902.
97. Dhakal R, Vupparaboina KK, Verkicharla PK. Anterior sclera undergoes thinning with increasing degree of myopia. Invest Ophthalmol Vis Sci 2020;61:6.
98. Terao N, Koizumi H, Kojima K, Kusada N, Nagata K, Yamagishi T, et al. Short axial length and hyperopic refractive error are risk factors of central serous chorioretinopathy. Br J Ophthalmol 2020;104:1260– 1265.
99. Kishi S, Matsumoto H, Sonoda S, Hiroe T, Sakamoto T, Akiyama H. Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy. PLoS One 2018;13:e0206646.
100. Matsumoto H, Hoshino J, Mukai R, Nakamura K, Kikuchi Y, Kishi S, et al. Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases. Ophthalmol Retina 2020;4:938–945.
101. Chen LL, Wang Q, Yu WH, Chen YX. Choroid changes in vortex vein-occluded monkeys. Int J Ophthalmol 2018;11:1588–1593.
102. Shinojima A, Mehanna C, Lavia CA, Gaudric A, Tadayoni R, Bousquet E. Central serous chorioretinopathy: Risk factors for serous retinal detachment in fellow eyes. Br J Ophthalmol 2020;104:852–856.
103. Kunikata H, Sato R, Nishiguchi KM, Nakazawa T. Systemic oxidative stress level in patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2020;258:1575–1577.
104. Kim YH, Kang E, Oh J. Factors related to the location of pigment epithelial detachment in central serous chorioretinopathy. Sci Rep 2022;12:4507.
105. Yagi M, Miyake M, Mori Y, Hosoda Y, Takahashi A, Muraoka Y, et al. Natural course of pachychoroid pigment epitheliopathy. Ophthalmol Sci 2022;2:100201.
106. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina 2015;35:1–9.
107. Tang J, Han X, Tang R, Li M, Wang Z, Zhao M, et al. Case series: Pachychoroid pigment epitheliopathy transformed to polypoidal choroidal vasculopathy after long-term follow-up. BMC Ophthalmol 2022;22:272.
108. Gerardy M, Yesilirmak N, Legras R, Behar-Cohen F, Bousquet E. Central serous chorioretinopathy: Highresolution imaging of asymptomatic fellow eyes using adaptive optics scanning laser ophthalmoscopy. Retina 2022;42:375–380.
109. Castro-Navarro V, Behar-Cohen F, Chang W, Joussen AM, Lai TYY, Navarro R, et al. Pachychoroid: Current concepts on clinical features and pathogenesis. Graefes Arch Clin Exp Ophthalmol 2021;259:1385–1400.
110. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009;29:1469–1473.
111. Izumi T, Koizumi H, Maruko I, Takahashi Y, Sonoda S, Sakamoto T, et al. Structural analyses of choroid after halfdose verteporfin photodynamic therapy for central serous chorioretinopathy. Br J Ophthalmol 2017;101:433–437.
112. Iu LPL, Chan HY, Ho M, Lai FHP, Mak ACY, Wong RLM, et al. The contemporary role of photodynamic therapy in the treatment of pachychoroid diseases. J Ophthalmol 2021;2021:6590230.
113. Yannuzzi LA. Type-A behavior and central serous chorioretinopathy. Retina 1987;7:111–131.
114. Conrad R, Geiser F, Kleiman A, Zur B, Karpawitz-Godt A. Temperament and character personality profile and illness-related stress in central serous chorioretinopathy. SciWorldJ 2014;2014:631687.
115. Sahin A, Bez Y, Kaya MC, Türkcü FM, Sahin M, Yüksel H. Psychological distress and poor quality of life in patients with central serous chorioretinopathy. Semin Ophthalmol 2014;29:73–76.
116. Cheong KX, Barathi VA, Teo KYC, Chakravarthy U, Tun SBB, Busoy JM, et al. Choroidal and retinal changes after systemic adrenaline and photodynamic therapy in nonhuman primates. Invest Ophthalmol Vis Sci 2021;62:25.
117. Maltsev DS, Kulikov AN, Vasiliev AS, Chhablani J. Accommodation is decreased in eyes with acute central serous chorioretinopathy. Optom Vis Sci 2022;99:687– 691.
118. Maltsev DS, Kulikov AN, Vasiliev AS. Effect of topical pilocarpine on choroidal thickness in healthy subjects. Optom Vis Sci 2020;97:457–461.
119. Yeung SC, Park JY, Park D, You Y, Yan P. The effect of systemic and topical ophthalmic medications on choroidal thickness: A review. Br J Clin Pharmacol 2022;88:2673– 2685.
120. Singh SR, Vupparaboina KK, Goud A, Dansingani KK, Chhablani J. Choroidal imaging biomarkers. Surv Ophthalmol 2019;64:312–333.
121. Agrawal R, Chhablani J, Tan KA, Shah S, Sarvaiya C, Banker A. Choroidal vascularity index in central serous chorioretinopathy. Retina 2016;36:1646–1651.
122. Agrawal R, Gupta P, Tan K-A, Cheung CMG, Wong T-Y, Cheng C-Y. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep 2016;6:1–9.
123. Mirshahi R, Naseripour M, Shojaei A, Heirani M, Alemzadeh SA, Moodi F, et al. Differentiating a pachychoroid and healthy choroid using an unsupervised machine learning approach. Sci Rep 2022;12:16323. 18