Journal of Ophthalmic and Vision Research

ISSN: 2008-322X

The latest research in clinical ophthalmology and the science of vision.

Impact of Color and Polarity on Visual Resolution with Varying Contrast Ratios and Different Text Backgrounds

Published date: Apr 29 2022

Journal Title: Journal of Ophthalmic and Vision Research

Issue title: April–June 2022, Volume 17, Issue 2

Pages: 217 – 224

DOI: 10.18502/jovr.v17i2.10793

Authors:

Ai-Hong Chenaihong0707@yahoo.comOptometry, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Malaysia

Nurulain MuhamadOptometry, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Malaysia

Abstract:

Purpose: To assess the impact of color and polarity in predicting the changes of visual resolution for different text backgrounds with increasing contrast ratios.

Methods: Text-background designs of eight contrast ratios (0.15, 0.30, 0.47, 0.52, 0.57, 0.60, 0.70, and 0.78) and two text polarities (positive; black text and negative; white text) were compared with and without the presence of background color (blue, green, orange, and red). The visual resolution was measured in logMAR using Landolt C. The rate of changes in visual resolution measurements was analyzed using linear regression as contrast ratios increased with and without background color.

Results: Visual resolution varied significantly with and without the background color element under both polarity investigations (P < 0.05). Contrast ratio accounts for 77.4% of the variation within the visual resolution measurement with a color background [F(1,6) = 20.76, P < 0.01]. Contrast ratio accounts for 97.16% of the variation in visual resolution measurements without a color background [F(1,6) = 205.63, P < 0.01].

Conclusion: As contrast decreases, color plays a more significant role than the non-color factor in the resolution of fine details in both polarities as it influences the visual resolution outcome which is reflected in the measurements in logMAR units.

Keywords: Color, Contrast, Polarity, Text-background, Visual Resolution

References:

1. Millodot M. Dictionary of optometry and visual science. Oxford, UK: Butterworth Heinemann; 2009.

2. North RV. Work and the eye. Oxford, UK: Butterworth Heinemann; 2001. Visual performance; p. 1–17.

3. Boyce P. Human factors in lighting. Boca Raton, Florida, United States: CRC Press Taylor & Francis Group; 2014.

4. Nadler MP, Miller D, Nadler D. Glare and contrast sensitivity for clinicians. New York, NY: Springer Publishing Company; 1990.

5. Legge GE, Rubin GS, Luebker A. Psychophysics of reading: V. The role of contrast in normal vision. Vision Res 1987;27:1165–1177.

6. Hung GK, Ciuffreda KJ. Models of the visual system. Dordrecht, Netherlands: Kluwer Academic; 2002. Neural models of motion perception; p. 487–519.

7. Knoblauch K, Arditi A, Szlyk J. Effects of chromatic and luminance contrast on reading. J Opt Soc Am A 1991;8:428.

8. Legge GE, Parish DH, Luebker A, Wurm LEEH. Psychophysics of reading?: XI. Comparing color contrast and luminance contrast. J Opt Soc Am A 1990;7:2002– 2010.

9. Tinker MA, Paterson DG. Studies of typographical factors influencing speed of reading VII. Variations in color of print and background. Am J Appl Psychol 1931;15:471–479.

10. Ling J, van Schaik P. The effect of text and background color on visual search of Web pages. Displays 2002;23:223–230.

11. Chen A, Muhamad N. Contrast ratios, color elements, and polarities in visual acuity measurements. Int J Eng Technol 2018;7:89–93.

12. Tanaka Y, Yokoyama S, Horai R, Kojima T, Hiroyuki S, Kato Y, et al. Effect of background luminance level on the assessment of color visual acuity using colored landolt rings in young healthy subjects. Curr Eye Res 2018;43:428–434.

13. Shieh K, Lin C. Effects of screen type, ambient illumination, and color combination on VDT visual performance and subjective preference. Int J Ind Ergon 2000;26:527–536.

14. Humar I, Gradisar M, Turk T, Erjavec J. The impact of color combinations on the legibility of text presented on LCDs. Appl Ergon 2014;45:1510–1517.

15. Humar I, Gradisar M, Turk T. The impact of color combinations on the legibility of a Web page text presented on CRT displays. Appl Ergon 2008;38:885– 899.

16. Chen A, Muhamad N. Greater effect of contrast polarities on visual acuity measurements using chart with shorter wavelength background. Malaysian J Fundam Appl Sci 2018;14:515–519.

17. Westheimer G. Visual acuity with reversed-contrast charts: I. Theoretical and psychological investigations. Optom Vis Sci 2003;80:745–748.

18. Westheimer G, Chu P, Huang W, Tran T, Dister R. Visual Acuity with reversed-contrast charts: II. Clinical investigation. Optom Vis Sci 2003;80:749–752.

19. Piepenbrock C, Mayr S, Buchner, A. Smaller pupil size and better proofreading performance with positive than with negative polarity displays. Ergonomics 2014;57:1670–1677.

20. Piepenbrock C, Mayr S, Mund I, Buchner A. Positive display polarity is advantageous for both younger and older adults. Ergonomics 2013;56:1116–24.

21. Buchner A, Baumgartner N. Text – background polarity affects performance irrespective of ambient illumination and color contrast. Ergonomics 2007;50:1036–1063.

22. Bernal-Molina P, Esteve-Taboada JJ, Ferrer-Blasco T, Montés-Micó R. Influence of contrast polarity on the accommodative. J Optom 2019;12:38–43.

23. Schrauf M, Stern C. The visual resolution of Landolt-C optotypes in human subjects depends on their orientation: the ’gap-down’ effect. Neurosci Lett 2001;299:185–188.

24. Fang P, Liu YF. Energy channeling LED driver technology to achieve flicker-free operation with true single stage power factor correction. IEEE Trans Power Electron 2017;32:3892–3907.

25. Santos RL dos, Rufino DM, Morais MBM, Sa EM. A charge-pump led driver with PFC and low-frequencyflicker reduction. 2017 Brazilian Power Electron Conf 2017:1–7.

26. Schwartz SH. Visual perception: a clinical orientation. New York, NY: McGraw-Hill; 2010.

27. Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat Methods 2009;8:597–599.

28. Erdfelder E, Faul F, Buchner A. GPOWER: a general power analysis program. Behav Res Methods, Instruments, Comput 1996;28:1–11.

29. Suresh K. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci 2011;4:8–11.

30. Greenlee MW, Heitger F. The functional role of contrast adaptation. Vision Res 1998;28:791–797.

31. Portnoy GH, Brabyn J, Schneck ME, Jampolsky A. The SKILL card: an acuity test of reduced luminance and contrast. Investig Opthalmology Vis Sci 1997;38:207–218.

32. Bailey I. Borish’s Clinical Refraction. Oxford, UK: Butterworth Heinemann. 2006. Visual acuity.

33. International Council of Ophthalmology. Visual acuity measurement standard. Ital J Ophthalmol 1998;2:1–15.

34. Stephane C, Bloj M, Harris JM. Interactions between luminance and color signals: effects on shape. J Vis 2013;13:1–23.

35. Mullen KT. The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings. J Physiol 1985;359:381–400.

36. Rovamo JM, Kankaanpaa MI, Kukkonen H. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings. Vision Res 1999;39:2387– 2398.

37. Aleman AC, Wang M, Schaeffel F. Reading and myopia: contrast polarity matters. Sci Rep 2018;8:1–8.

Download
HTML
Cite
Share
statistics

774 Abstract Views

544 PDF Downloads