Advances in Applied Nano-Bio Technologies
ISSN: 2710-4001
The latest research in nano-biotechnology
New Approach in Bioactive Materials for Regeneration Dental Application
Published date: Mar 20 2025
Journal Title: Advances in Applied Nano-Bio Technologies
Issue title: Advances in Applied Nano-Bio Technologies: Volume 6 Issue 1
Pages: 46 - 60
Authors:
Abstract:
Regenerative dentistry is an advancing discipline within the dental profession. Tissue engineering, the cornerstone of regenerative dentistry, primarily emphasizes three essential components: stem cells, bioactive compounds, and scaffolds. Stem cells produced from dental tissue are particularly important owing to their exceptional characteristics. Regenerative treatments have introduced innovative methods to several traditional treatment tactics across dental professions. Bone tissue injuries in oral and dental contexts frequently pose significant challenges, as traditional treatments may fail to restore lost or damaged bone tissue completely. Regenerative endodontic procedures, such as pulp revascularization, offer an alternative to conventional root canal treatment. Furthermore, traditional surgical and nonsurgical periodontal therapies are being supplanted by enhanced methods of directed tissue regeneration facilitated by three-dimensional bioprinting and computer-aided design (CAD), which have transformed oral and maxillofacial tissue engineering.
Keywords: regenerative dentistry, dental stem cells, bioactive materials, tissue engineering, 3D bioprinting
References:
[1] Wei X, Yang M, Yue L, Huang D, Zhou X, Wang X, et al. Expert consensus on regenerative endodontic procedures. Int J Oral Sci. 2022;14:55.
[2] Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31:711-8.
[3] Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16:247-52.
[4] Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I. Pulp regeneration concepts for nonvital teeth: From tissue engineering to clinical approaches. Tissue Eng Part B Rev. 2018;24:419-42.
[5] Wigler R, Kaufman AY, Lin S, Steinbock N, Hazan-Molina H, Torneck CD. Revascularization: A Treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod. 2013;39:319-26.
[6] Moazzami F, Ghahramani Y, Tamaddon AM, Nazhavani AD, Adl A. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iran Endod J. 2013;9:50.
[7] Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against enterococcus faecalis in the root canal treatment. BMC Oral Health. 2023;23:20.
[8] Könönen E, Gursoy M, Gursoy UK. Periodontitis: A multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8.
[9] Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, et al. Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis. Front cell dev biol. 2021;9:663037.
[10] Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, Del Ser T, Serra A, et al. Oral microbiota, its equilibrium and implications in the pathophysiology of human diseases: A systematic review. Biomedicines. 2022;10.
[11] Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, et al. Oral microbiota: A major player in the diagnosis of systemic diseases. Diagnostics. 2021;11.
[12] Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan A. Effect of endodontic irrigants and medicaments mixed with silver nanoparticles against biofilm formation of enterococcus faecalis. Iran Endod J. 2018;13:559.
[13] Ramseier CA, Rasperini G, Batia S, Giannobile WV. Advanced reconstructive technologies for periodontal tissue repair. Periodontol 2000. 2012;59:185-202.
[14] Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells. 2019;8.
[15] Oshagh M, Danaei SM, Ghahremani Y, Pajuhi N, Boushehri SG. Impact of an educational leaflet on parents’ knowledge and awareness of children’s orthodontic problems in Shiraz. East Mediterr Health J. 2011;17:121-5.
[16] Galli M, Yao Y, Giannobile WV, Wang HL. Current and future trends in periodontal tissue engineering and bone regeneration. Plast Aesthet Res. 2021;8.
[17] Deng R, Xie Y, Chan U, Xu T, Huang Y. Biomaterials and biotechnology for periodontal tissue regeneration: Recent advances and perspectives. J Dent Res. 2022;16:1.
[18] Alomar X, Medrano J, Cabratosa J, Clavero JA, Lorente M, Serra I, et al. Anatomy of the temporomandibular joint. Seminars in Ultrasound, CT and MRI. 2007;28:170-83.
[19] Stocum DL, Roberts WE. Part I: development and physiology of the temporomandibular joint. Curr Osteoporos Rep. 2018;16:360-8.
[20] Ingawale S, Goswami T. Temporomandibular joint: disorders, treatments, and biomechanics. Ann Biomed Eng. 2009;37:976-96.
[21] Roberts WE, Stocum DL. Part II: Temporomandibular joint (TMJ)—Regeneration, degeneration, and adaptation. Curr Osteoporos Rep. 2018;16:369-79.
[22] Cardoneanu A, Macovei LA, Burlui AM, Mihai IR, Bratoiu I, Rezus, II, et al. Temporomandibular joint osteoarthritis: pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration. Int J Mol Sci. 2022;24.
[23] Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the temporomandibular joint: a narrative overview. Medicina. 2022;59:8.
[24] Delpachitra S, Dimitroulis G. Osteoarthritis of the temporomandibular joint: a review of aetiology and pathogenesis. Br J Oral Maxillofac Surg. 2022;60:387-96.
[25] Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater. 2019;8:223-37.
[26] Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:1-10.
[27] Foster AL, Moriarty TF, Zalavras C, Morgenstern M, Jaiprakash A, Crawford R, et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Inj. 2021;52:43-52.
[28] Dittmer KE, Firth EC. Mechanisms of bone response to injury. J Vet Diagn Invest. 2017;29:385-95.
[29] Schindeler A, McDonald MM, Bokko P, Little DG, editors. Bone remodeling during fracture repair: The cellular picture. Seminars in cell & developmental biology; 2008: Elsevier.
[30] Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204-18.
[31] Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS. The Effect of inflammation on bone. Front Physiol. 2020;11:511799.
[32] Schlickewei CW, Kleinertz H, Thiesen DM, Mader K, Priemel M, Frosch KH, et al. Current and future concepts for the treatment of impaired fracture healing. Int J Mol Sci. 2019;20.
[33] Siska P, Gruen G, Menzel C, Pape H. External adjuncts to enhance fracture healing: What is the role of ultrasound? Der Unfallchirurg. 2009;112:6-14.
[34] Liu T, Xu J, Pan X, Ding Z, Xie H, Wang X, et al. Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater. 2021;6:2467-78.
[35] Esmaeili Y, Bidram E, Bigham A, Atari M, Nasr Azadani R, Tavakoli M, et al. Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix. Alex Eng J. 2023;81:137-69.
[36] Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater. 2019;4:366-79.
[37] Park S, Rahaman KA, Kim Y-C, Jeon H, Han H-S. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater. 2024;40:345-65.
[38] Riha SM, Maarof M, Fauzi MB. Synergistic effect of biomaterial and stem cell for skin tissue engineering in cutaneous wound healing: A concise review. Polymers (Basel). 2021;13.
[39] Mousavi SM, Yousefi K, Hashemi SA, Afsa M, BahranI S, Gholami A, et al. Renewable carbon nanomaterials: Novel resources for dental tissue engineering. Nanomater. 2021;11:2800.
[40] Hoang DM, Pham PT, Bach TQ, Ngo AT, Nguyen QT, Phan TT, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7:272.
[41] Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater. 2023;19:50-74.
[42] T Brown P, M Handorf A, Bae Jeon W, Li W-J. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des. 2013;19:3429-45.
[43] Nakamura N, Hui J, Koizumi K, Yasui Y, Nishii T, Lad D, et al. Stem cell therapy in cartilage repair-culture-free and cell culture–based methods. Oper Tech Orthop. 2014;24:54-60.
[44] Sabeti M, Golchert K, Torabinejad M. Regeneration of pulp-dentin complex in a tooth with symptomatic irreversible pulpitis and open apex using regenerative endodontic procedures. J Endod. 2021;47:247-52.
[45] Pulyodan MK, Paramel Mohan S, Valsan D, Divakar N, Moyin S, Thayyil S. Regenerative endodontics: A paradigm shift in clinical endodontics. J Pharm Bioallied Sci. 2020;12:S20-s6.
[46] Li XL, Fan W, Fan B. Dental pulp regeneration strategies: A review of status quo and recent advances. Bioact Mater. 2024;38:258-75.
[47] Lin L, Ricucci D, Huang GJ. Regeneration of the dentine–pulp complex with revitalization/revascularization therapy: challenges and hopes. Int Endod J. 2014;47:713-24.
[48] Babaki D, Matin MM. Odontoblast-like cytodifferentiation of dental stem cells: A review. Iran Endod J. 2020;15:79- 89.
[49] Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, et al. Application of stem cells in oral disease therapy: Progresses and perspectives. Front physiol. 2017;8:197.
[50] Al-Bayati S. Dental stem cells: A perspective area in dentistry. Int J Dent Res. 2015;3:15-25.
[51] Karamzadeh R, Eslaminejad MB. Dental-related stem cells and their potential in regenerative medicine. Regenerative Medicine and Tissue Engineering: IntechOpen; 2013.
[52] Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endod. 2016;42:47-56.
[53] Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration. World J Stem Cells. 2019;11:604.
[54] Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, et al. Dentin and dental pulp regeneration by the patient’s endogenous cells. Endod Topics. 2013;28:106-17.
[55] Kay EP, Lee MS, Seong GJ, Lee YG. TGF-ßs stimulate cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts. Curr Eye Res. 1998;17:286-93.
[56] Li X, Xie R, Luo Y, Shi R, Ling Y, Zhao X, et al. Cooperation of TGF-β and FGF signalling pathways in skin development. Cell Prolif. 2023;56:e13489.
[57] Bautch VL. VEGF-directed blood vessel patterning: from cells to organism. Cold Spring Harb Perspect Med. 2012;2:a006452.
[58] Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6:1-10.
[59] Mazzoni A, Breschi L, Carrilho M, Nascimento FD, Orsini G, Ruggeri Jr A, et al. A review of the nature, role, and function of dentin non-collagenous proteins. Part II: enzymes, serum proteins, and growth factors. Endod Topics. 2009;21:19-40.
[60] Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, et al. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol. 2009;28:221-9.
[61] Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213:66-72.
[62] Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-Jeshvaghani E, Dehghani L, Ramakrishna S. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World J Stem Cells. 2015;7:728-44.
[63] Lang Z, Chen T, Zhu S, Wu X, Wu Y, Miao X, et al. Construction of vascular grafts based on tissue-engineered scaffolds. Materials Today Bio. 2024;29:101336.
[64] Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Ando M, Yoshimoto K, et al. Nerve regeneration using the Bio 3D nerve conduit fabricated with spheroids. Journal of Artificial Organs. 2022;25:289-97.
[65] Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: A review. Dent Res J (Isfahan). 2016;13:379- 86.
[66] Hu L, Gao Z, Xu J, Zhu Z, Fan Z, Zhang C, et al. Decellularized Swine dental pulp as a bioscaffold for pulp regeneration. Biomed Res Int. 2017;2017:9342714.
[67] Kim I-H, Jeon M, Cheon K, Kim SH, Jung H-S, Shin Y, et al. In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration. Appl Sci. 2021;11:8472.
[68] Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med. 2020;9:445-64.
[69] Scannapieco FA, Dongari-Bagtzoglou A. Dysbiosis revisited: Understanding the role of the oral microbiome in the pathogenesis of gingivitis and periodontitis: A critical assessment. J Periodontol. 2021;92:1071-8.
[70] Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, et al. Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease. Int J Mol Sci. 2021;22:8900.
[71] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315-7.
[72] Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy. 2005;7:393-5.
[73] Keating A. Mesenchymal stromal cells. Curr Opin Hematol. 2006;13:419-25.
[74] Lin H, Chen H, Zhao X, Chen Z, Zhang P, Tian Y, et al. Advances in mesenchymal stem cell conditioned mediummediated periodontal tissue regeneration. J Transl Med. 2021;19:456.
[75] Entezami S, Sam MR. The role of mesenchymal stem cells-derived from oral and teeth in regenerative and reconstructive medicine. Tissue Cell. 2025;93:102766.
[76] Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells Int. 2020;2020:8864572.
[77] Ivanovski S, Han P, Peters O, Sanz M, Bartold P. The therapeutic use of dental mesenchymal stem cells in human clinical trials. J Dent Res. 2024;103:1173-84.
[78] Paz AG, Maghaireh H, Mangano FG. Stem cells in dentistry: Types of intra- and extraoral tissue-derived stem cells and clinical applications. Stem Cells Int. 2018;2018:4313610.
[79] Zhang W, Yelick PC. Tooth repair and regeneration: potential of dental stem cells. Trends Mol Med. 2021;27:501-11.
[80] Gao P, Kajiya M, Motoike S, Ikeya M, Yang J. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges. Jpn Dent Sci Rev. 2024;60:95-108.
[81] Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y, et al. Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng Part A. 2017;23:367-77.
[82] Banlue A, Kaewmuangmoon J, Janebodin K, Tansriratanawong K. Induction of migration and collagen synthesis in human gingival fibroblasts using periodontal ligament stem cell conditioned medium. Eur J Dent. 2024;18:219- 27.
[83] Ariffin F. Secretomes from dental-derived mesenchymal stem cells for tissue regeneration: University of Birmingham; 2020.
[84] Chapple IL, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89:S74-S84.
[85] Santamaría S, Sanchez N, Sanz M, Garcia-Sanz JA. Comparison of periodontal ligament and gingiva-derived mesenchymal stem cells for regenerative therapies. Clin Oral Investig. 2017;21:1095-102.
[86] Citterio F, Gualini G, Fierravanti L, Aimetti M. Stem cells and periodontal regeneration: present and future. Plastic and Aesthetic Res 2020;7.
[87] Mohammed E, Khalil E, Sabry D. Effect of adipose-derived stem cells and their exo as adjunctive therapy to nonsurgical periodontal treatment: a histologic and histomorphometric study in rats. Biomolecules. 2018;8:167.
[88] Swanson WB, Gong T, Zhang Z, Eberle M, Niemann D, Dong R, et al. Controlled release of odontogenic exosomes from a biodegradable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy. J Control Release. 2020;324:679-94.
[89] Zhao Y, Xie L. An update on mesenchymal stem cell-centered therapies in temporomandibular joint osteoarthritis. Stem Cells Int. 2021;2021:6619527.
[90] Jiang Y, Shi J, Di W, Teo KY, Toh WS. Mesenchymal stem cell-based therapies for temporomandibular joint repair: A systematic review of preclinical studies. Cells. 2024;13.
[91] Wright A, Arthaud-Day ML, Weiss ML. Therapeutic use of mesenchymal stromal cells: the need for inclusive characterization guidelines to accommodate all tissue sources and species. Front cell dev biol. 2021;9:632717.
[92] Law S, Chaudhuri S. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am J Stem Cells. 2013;2:22.
[93] Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, et al. Mesenchymal stem/stromal cells derived from human and animal perinatal tissues—origins, characteristics, signaling pathways, and clinical trials. Cells. 2021;10:3278.
[94] Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: Challenges and opportunities. Stem cell res ther. 2024;15:266.
[95] Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front cell dev biol. 2021;9:661532.
[96] Kwon G, Hohman MH. Inferior alveolar nerve and lingual nerve injury. StatPearls StatPearls Publishing; 2023.
[97] Zamzam SM, Hassouna MS, Elsawy MK, Gafaar SH. Otolaryngologists and iatrogenic facial nerve injury: a metaanalysis. Egypt j otolaryngol. 2023;39:71.
[98] Romsa B, Ruggiero SL. Diagnosis and management of lingual nerve injuries. Oral Maxillofac Surg Clin. 2021;33:239-48.
[99] Markiewicz MR, Callahan N, Miloro M. Management of traumatic trigeminal and facial nerve injuries. Oral Maxillofac Surg Clin. 2021;33:381-405.
[100] Li C, Zhang M, Liu S-Y, Zhang F-S, Wan T, Ding Z-T, et al. Chitin nerve conduits with three-dimensional spheroids of mesenchymal stem cells from SD rats promote peripheral nerve regeneration. Polymers. 2021;13:3957.
[101] El Sayed S, Nezwek T, Varacallo M. Physiology, Bone. StatPearls. 2020.
[102] Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Suppl 3:S131-9.
[103] Huysseune A. Skeletal system. The laboratory fish: Elsevier; 2000. p. 307-17.
[104] Oryan A, Kamali A, Moshiri A, Baghaban Eslaminejad M. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs. 2017;204:59-83.
[105] Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757.
[106] Hutchings G, Moncrieff L, Dompe C, Janowicz K, Sibiak R, Bryja A, et al. Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. J Clin Med. 2020;9:139.
[107] Jose JP, Joseph K. Advances in polymer composites: macro-and microcomposites–state of the art, new challenges, and opportunities. Polym Compos. 2012:1-16.
[108] Nelms L, Palmer WJ. Tissue engineering in mandibular reconstruction: Osteogenesis-inducing scaffolds. Plastic and Aesthetic Res. 2019;6.
[109] Sardarian AR, Abbasi F, Esmaeilpour M. Fe3O4@ Zein nanocomposites decorated with copper (II) as an efficient, durable, and biocompatible reusable catalyst for click synthesis of novel fluorescent 1, 4-disubstituted-1, 2, 3- triazoles in water. Sustain Chem Pharm. 2023;36:101256.
[110] Jeong H-J, Gwak S-J, Seo KD, Lee S, Yun J-H, Cho Y-S, et al. Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. Int J Mol Sci. 2020;21:1863.
[111] Paz JLC, Soares CJ, Rodrigues JF, de Araújo Almeida G, Soares PBF. Fractured alveolar process displacement evaluation-Effect of the rigidity of wire-composite splints. Dent Traumatol. 2021;37:247-55.
[112] Grønhøj C, Jensen DH, Glovinski PV, Jensen SB, Bardow A, Oliveri RS, et al. First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): study protocol for a randomized controlled trial. Trials. 2017;18:1-10.
[113] Alhejoury HA, Mogharbel LF, Al-Qadhi MA, Shamlan SS, Alturki AF, Babatin WM, et al. Artificial Saliva for therapeutic management of Xerostomia: A narrative review. J Pharm Bioallied Sci. 2021;13:S903-s7.
[114] Łysik D, Niemirowicz-Laskowska K, Bucki R, Tokajuk G, Mystkowska J. Artificial saliva: challenges and future perspectives for the treatment of xerostomia. Int J Mol Sci. 2019;20.
[115] Xu J, Wang D, Liu D, Fan Z, Zhang H, Liu O, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood, Am J Hematol. 2012;120:3142-51.
[116] Chihaby N, Orliaguet M, Le Pottier L, Pers JO, Boisramé S. Treatment of Sjögren’s syndrome with mesenchymal stem cells: A systematic review. Int J Mol Sci. 2021;22.
[117] Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular matrix-based bioinks for engineering tissue-and organ-specific microenvironments. Chem Rev. 2020;120:10608-61.
[118] Białkowska K, Komorowski P, Bryszewska M, Miłowska K. Spheroids as a type of three-dimensional cell culturesexamples of methods of preparation and the most important application. Int J Mol Sci. 2020;21.
[119] Tao F, Sayo K, Sugimoto K, Aoki S, Kojima N. Development of a tunable method to generate various threedimensional microstructures by replenishing macromolecules such as extracellular matrix components and polysaccharides. Sci Rep. 2020;10:6567.
[120] Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. Organoids. Nat Rev Methods Primers. 2022;2:94.
[121] Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586-97.
[122] Yu J, Park SA, Kim WD, Ha T, Xin Y-Z, Lee J, et al. Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers. 2020;12:2958.
[123] Gao G, Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett. 2016;38:203-11.
[124] Abedi N, Rajabi N, Kharaziha M, Nejatidanesh F, Tayebi L. Layered scaffolds in periodontal regeneration. J Oral Biol Craniofac Res. 2022;12:782-97.
[125] Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells. 2020;12:814-40.
[126] Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9:17.
[127] Ahmed ZT, Alkahlot MH, Haider KH. MSC-derived exosomes: Advances in cell-free therapy. Handbook of Stem Cell Applications: Springer; 2023. p. 1-41.
[128] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. science. 2020;367:eaau6977.