Advances in Applied Nano-Bio Technologies
ISSN: 2710-4001
The latest research in nano-biotechnology
Deep Eutectic Solvents: A Review of Syntheses, Properties, and their Applications in Different Fields
Published date: Jun 30 2025
Journal Title: Advances in Applied Nano-Bio Technologies
Issue title: Advances in Applied Nano-Bio Technologies: Volume 6 Issue 2
Pages: 1 - 45
Authors:
Abstract:
Organic solvents have been the focus of numerous restrictions and legislation recently because of their detrimental impact on the environment and toxicity to human health. In parallel, deep eutectic solvents (DESs) have emerged as more resilient and eco-friendly solvents and have a wide range of physicochemical benefits associated with their affordability and durability. On the other hand, DESs have other major advantages such as low toxicity, high availability, low flammability, high recyclability, and low volatility from an environmental and technological standpoint, which is why DESs have become a viable substitute for conventional organic solvents over the past ten years. The number of structural combinations encompassed by DESs is tremendous; thus, it is possible to design an optimal DES for each specific enzymatic reaction system. A DES can be used as a solvent or co-solvent, an extractive reagent for an enzymatic product, or a solvent for enzymatic biomass pretreatment in (bio) catalytic processes. In this review, we have attempted to first provide a simple definition of DESs. Then, we have examined the classification of DESs, their preparation techniques, and their description.
Keywords: deep eutectic solvents, green solvents, environmental impact, physicochemical advantages, traditional organic solvents, solvent/co-solvent
References:
[1] Lide DR. Handbook of organic solvents: CRC press; 2024.
[2] Cseri L, Razali M, Pogany P, Szekely G. Organic solvents in sustainable synthesis and engineering. Green chemistry: Elsevier; 2018. p. 513-553.
[3] Carrea G, Riva S. Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed. 2000;39:2226-2254.
[4] Cave GW, Raston CL, Scott JL. Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun. 2001:2159-2169.
[5] Gani R, Jiménez-González C, Constable DJ. Method for selection of solvents for promotion of organic reactions. Comput Chem Eng. 2005;29:1661-1676.
[6] Shuai L, Luterbacher J. Organic solvent effects in biomass conversion reactions. ChemSusChem. 2016;9:133-155.
[7] Sardarian AR, Abbasi F, Esmaeilpour M. Fe3O4@Zein nanocomposites decorated with copper (II) as an efficient, durable, and biocompatible reusable catalyst for click synthesis of novel fluorescent 1, 4-disubstituted-1, 2, 3-triazoles in water. Sustain Chem Pharm. 2023;36:101256.
[8] Kolář P, Shen J-W, Tsuboi A, Ishikawa T. Solvent selection for pharmaceuticals. Fluid Phase Equilib. 2002;194:771-782.
[9] Sekharan TR, Katari O, Rahman SNR, Pawde DM, Goswami A, Chandira RM, et al. Neoteric solvents for the pharmaceutical industry: an update. Drug Discov Today. 2021;26:1702-1711.
[10] Freitag W, Stoye D. Paints, coatings and solvents: John Wiley & Sons; 2008.
[11] Durkee JB. Cleaning with solvents. Developments in surface contamination and cleaning: Elsevier; 2008. p. 759-871.
[12] Phenix A, Wolbers RC, Townsend J, Zumbühl S, Bartoletti A, Lee J, et al. Removal of varnish: organic solvents as cleaning agents. Conservation of easel paintings: Routledge; 2020. p. 549-573.
[13] Rydberg J, Choppin GR, Musikas C, Sekine T. Solvent extraction equilibria. Solvent extraction principles and practice, revised and expanded: CRC Press; 2004. p. 121-217.
[14] Rodrigues GD, da Silva MdCH, da Silva LHM, Paggioli FJ, Minim LA, dos Reis Coimbra JS. Liquid–liquid extraction of metal ions without use of organic solvent. Sep Purif Technol. 2008;62:687-693.
[15] Buzzeo MC, Hardacre C, Compton RG. Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. Chemphyschem. 2006;7:176-180.
[16] Joshi DR, Adhikari N. An overview on common organic solvents and their toxicity. J Pharm Res Int. 2019;28:1-18.
[17] Hellweg S, Fischer U, Scheringer M, Hungerbühler K. Environmental assessment of chemicals: methods and application to a case study of organic solvents. Green Chem. 2004;6:418-427.
[18] Rogers R. Solvent flammability and reactivity hazards. Directory of Solvents: Springer; 1996. p. 70-81.
[19] Cowley W. Organic solvent topical report. Hanford Site (HNF), Richland, WA (United States); 1999.
[20] Mori R. Replacing all petroleum-based chemical products with natural biomass-based chemical products: a tutorial review. RSC sustain. 2023;1:179-212.
[21] Holbrey JD, Seddon K. Ionic liquids. Clean Prod Process. 1999;1:223-236.
[22] Welton T. Ionic liquids: a brief history. Biophys Rev. 2018;10:691-706.
[23] Endo T, Sunada K, Sumida H, Kimura Y. Origin of low melting point of ionic liquids: dominant role of entropy. Chem Sci. 2022;13:7560-7565.
[24] Ue M, Takeda M, Takahashi T, Takehara M. Ionic liquids with low melting points and their application to double-layer capacitor electrolytes. ESL. 2002;5:A119.
[25] Wasserscheid P. Volatile times for ionic liquids. Nature. 2006;439:797-797.
[26] Welton T. Ionic liquids in green chemistry. Green Chem. 2011;13:225-225.
[27] Fumino K, Wulf A, Ludwig R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem, Int Ed. 2008;47:8731-8734.
[28] He Z, Alexandridis P. Nanoparticles in ionic liquids: interactions and organization. PCCP. 2015;17:18238- 18261.
[29] Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX. Investigating the electrochemical windows of ionic liquids. JIEC. 2013;19:106-112.
[30] Piatti E, Guglielmero L, Tofani G, Mezzetta A, Guazzelli L, D’Andrea F, et al. Ionic liquids for electrochemical applications: correlation between molecular structure and electrochemical stability window. J Mol Liq. 2022;364:120001.
[31] Shamshina JL, Rogers RD. Ionic liquids: new forms of active pharmaceutical ingredients with unique, tunable properties. Chem Rev. 2023;123:11894-11953.
[32] Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ. Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. J Phys Chem B. 2006;110:22479-22487.
[33] Yu G, Zhao D, Wen L, Yang S, Chen X. Viscosity of ionic liquids: database, observation, and quantitative structure-property relationship analysis. AlChE J. 2012;58:2885-2899.
[34] Gao N, Yang Y, Wang Z, Guo X, Jiang S, Li J, et al. Viscosity of ionic liquids: theories and models. Chem Rev. 2023;124:27-123.
[35] Ohno H. Functional design of ionic liquids. Bull Chem Soc Jpn. 2006;79:1665-1680.
[36] Hawker RR, Haines RS, Harper JB. Variation of the cation of ionic liquids: the effects on their physicochemical properties and reaction outcome. Targets Heterocycl Syst Prop. 2015;18:141-213.
[37] Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, et al. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 2006;8:621-629.
[38] Hettige JJ, Kashyap HK, Annapureddy HVR, Margulis CJ. Anions, the reporters of structure in ionic liquids. J Phys Chem Lett. 2013;4:105-110.
[39] Seki S, Kobayashi T, Kobayashi Y, Takei K, Miyashiro H, Hayamizu K, et al. Effects of cation and anion on physical properties of room-temperature ionic liquids. J Mol Liq. 2010;152:9-13.
[40] Singh SK, Savoy AW. Ionic liquids synthesis and applications: an overview. J Mol Liq. 2020;297:112038.
[41] Lévêque J-M, Estager J, Draye M, Cravotto G, Boffa L, Bonrath W. Synthesis of ionic liquids using non conventional activation methods: an overview. Monatsh Chem. 2007;138:1103-1113.
[42] Kaur G, Kumar H, Singla M. Diverse applications of ionic liquids: a comprehensive review. J Mol Liq. 2022;351:118556.
[43] Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123-150.
[44] Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem. 2016;18:105-128.
[45] Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017;117:7190-7239.
[46] Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y. Carbon capture with ionic liquids: overview and progress. Energy Environ Sci. 2012;5:6668-6681.
[47] An X, Wang P, Ma X, Du X, Hao X, Yang Z, et al. Application of ionic liquids in CO2 capture and electrochemical reduction: a review. Carbon Resour Convers. 2023;6:85-97.
[48] Roosen C, Müller P, Greiner L. Ionic liquids in biotechnology: applications and perspectives for biotransformations. Appl Microbiol Biotechnol. 2008;81:607-614.
[49] Claus J, Sommer FO, Kragl U. Ionic liquids in biotechnology and beyond. Solid State Ionics. 2018;314:119-128.
[50] Abbott AP, Frisch G. Ionometallurgy: processing of metals using ionic liquids. In: Hunt A, editor. Element Recovery and Sustainability: The Royal Society of Chemistry; 2013. p. 0.
[51] Binnemans K, Jones PT. Ionic liquids and deep-eutectic solvents in extractive metallurgy: mismatch between academic research and industrial applicability. J Sustain Metall. 2023;9:423-438.
[52] Xiao H. Ionic liquid lubricants: basics and applications. Tribol Trans. 2017;60:20-30.
[53] Zhou Y, Qu J. Ionic liquids as lubricant additives: a review. ACS Appl Mater Interfaces. 2017;9:3209- 3222.
[54] Baaqel H, Tulus V, Chachuat B, Guillén-Gosálbez G, Hallett J. Uncovering the true cost of ionic liquids using monetization. In: Pierucci S, Manenti F, Bozzano GL, Manca D, editors. Computer Aided Chemical Engineering. 48: Elsevier; 2020. p. 1825-1830.
[55] George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, et al. Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem. 2015;17:1728-1734.
[56] Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renew Sustain Energy Rev. 2018;96:502-525.
[57] Flieger J, Flieger M. Ionic liquids toxicity—benefits and threats. Int J Mol Sci. 2020;21.
[58] Thuy Pham TP, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: a review. Water Res. 2010;44:352-372.
[59] Gao N, Yang Y, Wang Z, Guo X, Jiang S, Li J, et al. Viscosity of ionic liquids: theories and models. Chem Rev. 2024;124:27-123.
[60] Paduszyński K, Domańska U. Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network. J Chem Inf Model. 2014;54:1311- 1324.
[61] Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V. Preparation of novel, moisturestable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun. 2001:2010-2011.
[62] Zhang X, Zhu P, Li Q, Xia H. Recent advances in the catalytic conversion of biomass to furfural in deep eutectic solvents. Front Chem. 2022;10.
[63] Dai Y, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in carthamus tinctorius L. Anal Chem. 2013;85:6272-6278.
[64] Mohd Fuad F, Mohd Nadzir M, Harun@Kamaruddin A. Hydrophilic natural deep eutectic solvent : a review on physicochemical properties and extractability of bioactive compounds. J Mol Liq. 2021;339:116923.
[65] Popovic BM, Micic N, Potkonjak A, Blagojevic B, Pavlovic K, Milanov D, et al. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents – ultrafast microwaveassisted NADES preparation and extraction. Food Chem. 2022;366:130562.
[66] Bajkacz S, Adamek J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal Methods. 2018;11:1330-1344.
[67] Qin H, Hu X, Wang J, Cheng H, Chen L, Qi Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ. 2020;5:8-21.
[68] Gutiérrez MC, Ferrer ML, Mateo CR, del Monte F. Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir. 2009;25:5509-5515.
[69] Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013;766:61-68.
[70] Rodriguez Rodriguez N, van den Bruinhorst A, Kollau LJBM, Kroon MC, Binnemans K. Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain Chem Eng. 2019;7:11521-11528.
[71] Santana APR, Mora-Vargas JA, Guimarães TGS, Amaral CDB, Oliveira A, Gonzalez MH. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J Mol Liq. 2019;293:111452.
[72] Ullah R, Atilhan M, Anaya B, Khraisheh M, García G, ElKhattat A, et al. A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches. PCCP. 2015;17:20941-20960.
[73] Altamash T, Atilhan M, Aliyan A, Ullah R, García G, Aparicio S. Insights into choline chloride– phenylacetic acid deep eutectic solvent for CO2 absorption. RSC Adv. 2016;6:109201-109210.
[74] Gutiérrez A, Atilhan M, Aparicio S. A theoretical study on lidocaine solubility in deep eutectic solvents. PCCP. 2018;20:27464-27473.
[75] Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999-3093.
[76] Bernales VS, Marenich AV, Contreras R, Cramer CJ, Truhlar DG. Quantum mechanical continuum solvation models for ionic liquids. J Phys Chem B. 2012;116:9122-9129.
[77] Marenich AV, Cramer CJ, Truhlar DG. Performance of SM6, SM8, and SMD on the sample1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B. 2009;113:4538-4543.
[78] Jangir Ak, Patel D, More R, Parmar A, Kuperkar K. New insight into experimental and computational studies of choline chloride-based ‘green’ ternary deep eutectic solvent (TDES). J Mol Struct. 2019;1181:295-299.
[79] Jangir AK, Mandviwala H, Patel P, Sharma S, Kuperkar K. Acumen into the effect of alcohols on choline chloride: L-lactic acid-based natural deep eutectic solvent (NADES): a spectral investigation unified with theoretical and thermophysical characterization. J Mol Liq. 2020;317:113923.
[80] Wu D, Xu LH, Feng HJ, Zhu YW, Chen XY, Cui P. Design and theoretical study of novel deep eutectic solvents: the effects of bromine and chloride anions on solvation structure and supercapacitor performance. J Power Sources. 2021;492:229634.
[81] Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, et al. Computer simulations of deep eutectic solvents: challenges, solutions, and perspectives. Int J Mol Sci. 2022;23:645.
[82] Zhu S, Li H, Zhu W, Jiang W, Wang C, Wu P, et al. Vibrational analysis and formation mechanism of typical deep eutectic solvents: an experimental and theoretical study. J Mol Graphics Modell. 2016;68:158-175.
[83] Zhu W, Wang C, Li H, Wu P, Xun S, Jiang W, et al. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent. Green Chem. 2015;17:2464- 2472.
[84] Atilhan M, Altamash T, Aparicio S. Quantum chemistry insight into the interactions between deep eutectic solvents and SO2. Molecules. 2019;24:2963.
[85] Wagle DV, Zhao H, Deakyne CA, Baker GA. Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel. ACS Sustain Chem Eng. 2018;6:7525-7531.
[86] Makoś P, Boczkaj G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach. J Mol Liq. 2019;296:111916.
[87] Li C, Lu D, Wu C. A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. J Ind Eng Chem. 2021;98:161-167.
[88] García G, Atilhan M, Aparicio S. A theoretical study on mitigation of CO2 through advanced deep eutectic solvents. Int J Greenhouse Gas Control. 2015;39:62-73.
[89] Altamash T, Amhamed A, Aparicio S, Atilhan M. Effect of hydrogen bond donors and acceptors on CO2 absorption by deep eutectic solvents. Processes. 2020;8.
[90] Malik A, Dhattarwal HS, Kashyap HK. Distinct solvation structures of CO2 and SO2 in reline and ethaline deep eutectic solvents revealed by AIMD simulations. J Phys Chem B. 2021;125:1852-1860.
[91] McGaughy K, Reza MT. Systems analysis of SO2-CO2 Co-capture from a post-combustion coal-fired power plant in deep eutectic solvents. Energies. 2020;13.
[92] Migliorati V, Fazio G, Pollastri S, Gentili A, Tomai P, Tavani F, et al. Solubilization properties and structural characterization of dissociated HgO and HgCl2 in deep eutectic solvents. J Mol Liq. 2021;329:115505.
[93] Makoś P, Słupek E, Gębicki J. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – experimental and theoretical studies. J Mol Liq. 2020;308:113101.
[94] Li Z-L, Zhong F-Y, Huang J-Y, Peng H-L, Huang K. Sugar-based natural deep eutectic solvents as potential absorbents for NH3 capture at elevated temperatures and reduced pressures. J Mol Liq. 2020;317:113992.
[95] Li G, Xie Q, Liu Q, Liu J, Wan C, Liang D, et al. Separation of phenolic compounds from oil mixtures by betaine-based deep eutectic solvents. Asia-Pac J Chem. Eng. 2020;15:e2515.
[96] Azadi S, Sardarian AR, Esmaeilpour M. Magnetically-recoverable Schiff base complex of Pd(II) immobilized on Fe3O4@SiO2 nanoparticles: an efficient catalyst for the reduction of aromatic nitro compounds to aniline derivatives. Monatsh Chemie. 2021;152:809-821.
[97] Darvishi T, Azadi S, Goudarzian N. Polyethyleneimine-immobilized CoCl2 nanoparticles: Synthesis, characterization, application as a new efficient and reusable nanocomposite catalyst for one-step transesterification reaction. Synth Commun. 2024;54:672-693.
[98] Azadi S, Goudarzian N, Parish MH, Niroomand Hosseini F. Polyvinylpyrrolidone-supported zirconium nanoparticles: synthesis, characterization, efficiency as a new polymer nanocomposite catalyst for one-step transesterification reaction. Monatsh Chemie. 2023;154:239-248.
[99] Lawal IA, Lawal MM, Azeez MA, Ndungu P. Theoretical and experimental adsorption studies of phenol and crystal violet dye on carbon nanotube functionalized with deep eutectic solvent. J Mol Liq. 2019;288:110895.
[100] Ghenaatian HR, Shakourian-Fard M, Kamath G. Interaction of Cun, Agn and Aun (n = 1–4) nanoparticles with ChCl:Urea deep eutectic solvent. J Mol Graphics Modell. 2021;105:107866.
[101] Corvo MC, Ferreira AS, Paiva T, Zanatta M, Lopes M, Barrulas R. Molecular interactions in ionic liquids: the NMR contribution towards tailored solvents. In: Khaneja N, editor. Nuclear Magnetic Resonance. Rijeka: IntechOpen; 2019.
[102] Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, et al. Computer simulations of deep eutectic solvents: challenges, solutions, and perspectives. Int J Mol Sci. 2022;23.
[103] Ratcliff LE, Mohr S, Huhs G, Deutsch T, Masella M, Genovese L. Challenges in large scale quantum mechanical calculations. Wiley Interdisciplinary Reviews: Comput Mol Sci. 2017;7:e1290.
[104] Korotkevich A, Firaha DS, Padua AAH, Kirchner B. Ab initio molecular dynamics simulations of SO2 solvation in choline chloride/glycerol deep eutectic solvent. Fluid Phase Equilib. 2017;448:59-68.
[105] Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098-3100.
[106] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785-789.
[107] Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials. Phys Rev B. 1996;54:1703-1710.
[108] VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys. 2007;127.
[109] Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132.
[110] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32:1456-1465.
[111] Fetisov EO, Harwood DB, Kuo IFW, Warrag SEE, Kroon MC, Peters CJ, et al. First-principles molecular dynamics study of a deep eutectic solvent: choline chloride/urea and its mixture with water. J Phys Chem B. 2018;122:1245-1254.
[112] Hospital A, Ramon GJ, Modesto O, and Gelpí JL. Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem. 2015;8:37-47.
[113] Bedrov D, Piquemal J-P, Borodin O, MacKerell AD, Jr., Roux B, Schröder C. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem Rev. 2019;119:7940- 7995.
[114] Doherty B, Acevedo O. OPLS Force field for choline chloride-based deep eutectic solvents. J Phys Chem B. 2018;122:9982-9993.
[115] Avula NVS, Karmakar A, Kumar R, Balasubramanian S. Efficient parametrization of force field for the quantitative prediction of the physical properties of ionic liquid electrolytes. J Chem Theory Comput. 2021;17:4274-4290.
[116] Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 2021;121:1232-1285.
[117] Campozano Parra LV. Effectiveness of causality-based predictor selection for statistical downscaling: a case study of rainfall in an Ecuadorian Andes basin. 2022.
[118] Bishop CM. Pattern recognition and machine learning by Christopher M. Bishop: Springer Science+ Business Media, LLC; 2006.
[119] Parhizkari M, Shabanzadeh M, Abbasi F, Saremi S. A comprehensive review on breast cancer detection and using machine learning techniques: Methods, and challenges ahead. AANBT. 2025;6:24 - 45.
[120] Koutsoukos S, Philippi F, Malaret F, Welton T. A review on machine learning algorithms for the ionic liquid chemical space. Chem Sci. 2021;12:6820-6843.
[121] Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM. Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques. Thermochim Acta. 2012;527:59-66.
[122] Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM. Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques. Chemometrics Intellig Lab Syst. 2012;118:193-199.
[123] Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060-11082.
[124] Amde M, Liu J-F, Pang L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ Sci Technol. 2015;49:12611-12627.
[125] Pedro SN, Freire CSR, Silvestre AJD, Freire MG. Deep eutectic solvents and pharmaceuticals. Encyclopedia. 2021;1:942-963.
[126] Emami S, and Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol. 2020;25:779-796.
[127] Svigelj R, Dossi N, Grazioli C, Toniolo R. Deep eutectic solvents (DESs) and their application in biosensor development. Sensors. 2021;21.
[128] Liu Y, Dai Z, Zhang Z, Zeng S, Li F, Zhang X, et al. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy Environ. 2021;6:314-328.
[129] Pelaquim FP, Barbosa Neto AM, Dalmolin IAL, Costa MCd. Gas solubility using deep eutectic solvents: review and analysis. Ind Eng Chem Res. 2021;60:8607-8620.
[130] Cunha SC, Fernandes JO. Extraction techniques with deep eutectic solvents. TrAC, Trends Anal Chem. 2018;105:225-239.
[131] Alam MA, Muhammad G, Khan MN, Mofijur M, Lv Y, Xiong W, et al. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J Clean Prod. 2021;309:127445.
[132] Nkuku CA, LeSuer RJ. Electrochemistry in deep eutectic solvents. J Phys Chem B. 2007;111:13271- 13277.
[133] Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA. Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J. 2015;273:551-567.
[134] Crump MR, Bidinger SL, Pavinatto FJ, Gong AT, Sweet RM, MacKenzie JD. Sensorized tissue analogues enabled by a 3D-printed conductive organogel. npj flex electron. 2021;5:7.
[135] Smirnov MA, Fedotova VS, Sokolova MP, Nikolaeva AL, Elokhovsky VY, Karttunen M. Polymerizable choline- and imidazolium-based ionic liquids reinforced with bacterial cellulose for 3D-printing. Polymers (Basel). 2021;13.
[136] Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003:70-71.
[137] Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. Evaluation of deep eutectic solvents as new media for candida antarctica B lipase catalyzed reactions. Process Biochem. 2012;47:2081-2089.
[138] Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC. Natural deep eutectic solvents – solvents for the 21st century. ACS Sustain Chem Eng. 2014;2:1063-1071.
[139] Vázquez L, Bañares C, Torres CF, Reglero G. Green technologies for the production of modified lipids. Annu Rev Food Sci Technol. 2020;11:319-337.
[140] Ruesgas-Ramón M, Figueroa-Espinoza MC, Durand E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem. 2017;65:3591-3601.
[141] Nahar Y, Thickett SC. Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science. Polym. 2021;13.
[142] Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011;156:1701-1705.
[143] Verma R, Mohan M, Goud VV, Banerjee T. Operational strategies and comprehensive evaluation of menthol based deep eutectic solvent for the extraction of lower alcohols from aqueous media. ACS Sustain Chem Eng. 2018;6:16920-16932.
[144] Abranches DO, Martins MAR, Silva LP, Schaeffer N, Pinho SP, Coutinho JAP. Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chem Commun. 2019;55:10253-10256.
[145] Mgxadeni N, Kabane B, Bahadur I, Varma RS, Singh SK. Deep eutectic solvents as sustainable solvents for industrial separation problems: A recent update. J. Ion. Liq. 2023;3:100065.
[146] Ijardar SP, Singh V, Gardas RL. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Mol. 2022;27.
[147] Zhang M, Zhang X, Liu Y, Wu K, Zhu Y, Lu H, et al. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ Sci Pollut Res. 2021;28:35537-35563.
[148] Schaeffer N, Conceição JHF, Martins MAR, Neves MC, Pérez-Sánchez G, Gomes JRB, et al. Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green Chem. 2020;22:2810-2820.
[149] Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. TrAC, Trends Anal Chem. 2021;136:116187.
[150] García G, Aparicio S, Ullah R, Atilhan M. Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels. 2015;29:2616-2644.
[151] Shafie MH, Yusof R, Gan C-Y. Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. J Mol Liq. 2019;288:111081.
[152] Singh A, Walvekar R, Mohammad K, Wong WY, Gupta TCSM. Thermophysical properties of glycerol and polyethylene glycol (PEG 600) based DES. J Mol Liq. 2018;252:439-444.
[153] Jangir AK, Sethy P, Verma G, Bahadur P, Kuperkar K. An inclusive thermophysical and rheology portrayal of deep eutectic solvents (DES) for metal oxides dissolution enhancement. J Mol Liq. 2021;332:115909.
[154] Abbott AP, Harris RC, Ryder KS. Application of hole theory to define ionic liquids by their transport properties. J Phys Chem B. 2007;111:4910-4913.
[155] Byrne EL, O’Donnell R, Gilmore M, Artioli N, Holbrey JD, Swadźba-Kwaśny M. Hydrophobic functional liquids based on trioctylphosphine oxide (TOPO) and carboxylic acids. PCCP. 2020;22:24744-24763.
[156] Entezari-Zarandi A, Larachi F. Selective dissolution of rare-earth element carbonates in deep eutectic solvents. J Rare Earths. 2019;37:528-533.
[157] AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA. Glycerol-based deep eutectic solvents: physical properties. J Mol Liq. 2016;215:98-103.
[158] Hammond OS, Bowron DT, Jackson AJ, Arnold T, Sanchez-Fernandez A, Tsapatsaris N, et al. Resilience of malic acid natural deep eutectic solvent nanostructure to solidification and hydration. J Phys Chem B. 2017;121:7473-7483.
[159] Hammond OS, Bowron DT, Edler KJ. The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem. 2017;129:9914-9917.
[160] Foreman MRS. Progress towards a process for the recycling of nickel metal hydride electric cells using a deep eutectic solvent. Cogent Chem. 2016;2:1139289.
[161] Chemat F, Anjum H, Shariff AM, Kumar P, Murugesan T. Thermal and physical properties of (Choline chloride+urea+l-arginine) deep eutectic solvents. J Mol Liq. 2016;218:301-308.
[162] Doche M-L, Mandroyan A, Mourad-Mahmoud M, Moutarlier V, Hihn J-Y. An ultrasonic-assisted process for copper recovery in a des solvent: Leaching and re-deposition. Chem Eng Process: Process Intensif. 2017;121:90-96.
[163] Zhu X-l, Xu C-y, Tang J, Hua Y-x, Zhang Q-b, Liu H, et al. Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. Trans Nonferrous Met Soc China. 2019;29:2222- 2228.
[164] Abbott AP. Model for the conductivity of ionic liquids based on an infinite dilution of holes. Chemphyschem. 2005;6:2502-2505.
[165] Ghareh Bagh FS, Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Zinc (II) chloride-based deep eutectic solvents for application as electrolytes: preparation and characterization. J Mol Liq. 2015;204:76-83.
[166] Abbott AP, Capper G, Gray S. Design of improved deep eutectic solvents using hole theory. Chemphyschem: a European journal of chemical physics and physical chemistry. 2006;7:803-806.
[167] Hanada T, Goto M. Synergistic deep eutectic solvents for lithium extraction. ACS Sustain Chem Eng. 2021;9:2152-2160.
[168] Taghizadeh M, Taghizadeh A, Vatanpour V, Ganjali MR, Saeb MR. Deep eutectic solvents in membrane science and technology: fundamental, preparation, application, and future perspective. Sep Purif Technol. 2021;258:118015.
[169] Rahman MS, Raynie DE. Thermal behavior, solvatochromic parameters, and metal halide solvation of the novel water-based deep eutectic solvents. J Mol Liq. 2021;324:114779.
[170] Pateli IM, Abbott AP, Jenkin GRT, Hartley JM. Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents. Green Chem. 2020;22:8360-8368.
[171] Morais ES, Freire MG, Freire CS, Coutinho JA, Silvestre AJ. Enhanced conversion of xylan into furfural using acidic deep eutectic solvents with dual solvent and catalyst behavior. ChemSusChem. 2020;13:784-790.
[172] Ribeiro BD, Florindo C, Iff LC, Coelho MA, Marrucho IM. Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng. 2015;3:2469-2477.
[173] Schaeffer N, Martins MAR, Neves CMSS, Pinho SP, Coutinho JAP. Sustainable hydrophobic terpenebased eutectic solvents for the extraction and separation of metals. Chem Commun. 2018;54:8104- 8107.
[174] Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY. Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol Adv. 2017;35:105-134.
[175] Lee J, Jung D, Park K. Hydrophobic deep eutectic solvents for the extraction of organic and inorganic analytes from aqueous environments. TrAC, Trends Anal Chem. 2019;118:853-868.
[176] van Osch DJGP, Zubeir LF, van den Bruinhorst A, Rocha MAA, Kroon MC. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015;17:4518-4521.
[177] Tang N, Liu L, Yin C, Zhu G, Huang Q, Dong J, et al. Environmentally benign hydrophobic deep eutectic solvents for palladium(II) extraction from hydrochloric acid solution. J Taiwan Inst Chem Eng. 2021;121:92-100.
[178] Ji Y, Zhao M, Li A, Zhao L. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem J. 2021;164:105974.
[179] van Osch DJGP, Parmentier D, Dietz CHJT, van den Bruinhorst A, Tuinier R, Kroon MC. Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Commun. 2016;52:11987-11990.
[180] Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM. Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng. 2015;3:2469-2477.
[181] Son CY, McDaniel JG, Schmidt JR, Cui Q, Yethiraj A. First-principles united atom force field for the ionic liquid BMIM+BF4 −: an alternative to charge scaling. J Phys Chem B. 2016;120:3560-3568.
[182] Chaumont A, Engler E, Schurhammer R. Is charge scaling really mandatory when developing fixedcharge atomistic force fields for deep eutectic solvents? J Phys Chem B. 2020;124:7239-7250.
[183] Pisano PL, Espino M, Fernández MdlÁ, Silva MF, Olivieri AC. Structural analysis of natural deep eutectic solvents. theoretical and experimental study. Microchem J. 2018;143:252-258.
[184] Wagle DV, Zhao H, Deakyne CA, Baker GA. Quantum chemical evaluation of deep eutectic slvents for the extractive desulfurization of fuel. ACS Sustain Chem Eng. 2018;6:7525-7531.
[185] Migliorati V, D’Angelo P. Deep eutectic solvents: a structural point of view on the role of the anion. Chem Phys Lett. 2021;777:138702.
[186] Migliorati V, Sessa F, D’Angelo P. Deep eutectic solvents: a structural point of view on the role of the cation. Chem Phys Lett. 2019;737:100001.
[187] Kaur S, Gupta A, Kashyap HK. Nanoscale spatial heterogeneity in deep eutectic solvents. J Phys Chem B. 2016;120:6712-6720.
[188] Kaur S, Kashyap HK. Unusual temperature dependence of nanoscale structural organization in deep eutectic solvents. J Phys Chem B. 2018;122:5242-5250.
[189] Ogawa H, Mori H. Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study. PCCP. 2020;22:8853-8863.
[190] Li Y, Ali MC, Yang Q, Zhang Z, Bao Z, Su B, et al. Hybrid deep eutectic solvents with flexible hydrogenbonded supramolecular networks for highly efficient uptake of NH3. ChemSusChem. 2017;10:3368- 3377.
[191] Nam NN, Do HDK, Trinh KTL, Lee NY. Design strategy and application of deep eutectic solvents for green synthesis of nanomaterials. Nanomater. 2023;13:1164.
[192] Yu D, Jiang D, Xue Z, Mu T. Deep eutectic solvents as green solvents for materials preparation. Green Chem. 2024;26:7478-7507.
[193] Abbasi F, Azadi S, Sardarian AR. Green approach to the library of 1, 8-naphthalimide and phthalimides fluorescent for the synthesis of 1, 4-disubstituted-1, 2, 3-triazoles and tetrazole derivatives in [ChCl,CuCl2]2 as a reusable, and efficient deep eutectic solvent. Adv Appl NanoBio Tech. 2024;5:38- 50.
[194] Abbasi F, Sardarian AR. Direct additive-free N-formylation and N-acylation of anilines and synthesis of urea derivatives using green, efficient, and reusable deep eutectic solvent ([ChCl,ZnCl2]2). Sci Rep. 2024;14:7206.
[195] Abbasi F, Sardarian AR. Efficient base-and ligand-free palladium catalysed O-arylation of phenols in choline chloride: triethanolamine as a reusable deep eutectic solvent. Royal Society Open Science. 2024;11:240045.
[196] Buarque FS, de Souza CE, Ferreira RM, Sabino TO, Teixeira OM, Bandeira LF, et al. Dissolution and enzymatic hydrolysis of sugarcane bagasse using ionic liquids and deep eutectic solvents. Process Biochem. 2024;147:257-267.
[197] Delavault A, Opochenska O, Schönrock S, Hollenbach R, Ochsenreither K, Syldatk C. Intensification of enzymatic sorbityl laurate production in dissolved and neat systems under conventional and microwave heating. ACS omega. 2024;9:17163-17173.
[198] Abbasi F, Sardarian AR. Direct amide bond formation reactions: a review on diverse transamidation strategies in recent advances. Adv Appl NanoBio Tech. 2023;4:14-28.
[199] Han M, Du K, He X, Li H, Li J, Li X, et al. Advancing green extraction of bioactive compounds using deep eutectic solvent-based ultrasound-assisted matrix solid-phase dispersion: application to UHPLC-PAD analysis of alkaloids and organic acids in coptidis rhizoma. Talanta. 2024;274:125983.
[200] Ferreira C, Sarraguça M. A comprehensive review on deep eutectic solvents and its use to extract bioactive compounds of pharmaceutical interest. Pharm. 2024;17:124.
[201] Kumar MS, Wang H-L, Chang H-X, Xiao Y, Lin J-Y. Tailor-made dimethyl sulfoxide-based ternary deep eutectic solvents for high-performance supercapacitors. J Energy Storage. 2025;114:115745.
[202] Motta D, Giuseppe AE, Damin A, Nejrotti S, Galliano S, Gerbaldi C, et al. Cost-effective and eco-friendly polyols-DESs for supercapacitors. 2024. p. 1.
[203] Barlybayeva A, Myrzakhmetov B, Wang Y, Mentbayeva A. Deep eutectic solvent-supported poly (vinyl) alcohol electrospun anion-exchange membrane for potential application in alkaline fuel cells. Sci Rep. 2024;14:25603.
[204] Barlybayeva A, Myrzakhmetov B, Karibayev M, Mentbayeva A, editors. Deep eutectic solvent supported polymer-based high performance anion exchange membrane for alkaline fuel cells. Electrochemical Society Meeting Abstracts 245; 2024: The Electrochemical Society, Inc.
[205] Guo M, Deng R, Gao M, Xu C, Zhang Q. Sustainable recovery of metals from e-waste using deep eutectic solvents: advances, challenges, and perspectives. Curr Opin Green Sustain Chem. 2024:100913.
[206] Suffia S, Dutta D. Applications of deep eutectic solvents in metal recovery from E-wastes in a sustainable way. J Mol Liq. 2024;394:123738.
[207] Hanada T, Schaeffer N, Katoh M, Coutinho JA, Goto M. Improved separation of rare earth elements using hydrophobic deep eutectic solvents: liquid–liquid extraction to selective dissolution. Green Chem. 2024;26:9671-9675.
[208] Alguacil FJ. Utilizing deep eutectic solvents in the recycle, recovery, purification and miscellaneous uses of rare earth elements. Molecules. 2024;29:1356.
[209] Sharma A, Park YR, Garg A, Lee B-S. Deep eutectic solvents enhancing drug solubility and its delivery. J Med Chem. 2024;67:14807-14819.
[210] Dhiman D, Alhammadi M, Kim H, Umapathi R, Huh YS, Venkatesu P. Designer solvents for pharmaceutics: role of ionic liquids/deep eutectic solvents in pharmaceutical formulations. Adv Therap. 2024;7:2400090.
[211] Nakaweh A, Al-Akayleh F, Al-Remawi M, Abdallah Q, Agha ASA. Deep eutectic system-based liquisolid nanoparticles as drug delivery system of curcumin for in-vitro colon cancer cells. J Pharm Innov. 2024;19:18.
[212] Javed S, Mangla B, Sultan MH, Almoshari Y, Sivadasan D, Alqahtani SS, et al. Pharmaceutical applications of therapeutic deep eutectic systems (THEDES) in maximising drug delivery. Heliyon. 2024;10.
[213] Weerasinghe UA, Wu T, Chee PL, Yew PYM, Lee HK, Loh XJ, et al. Deep eutectic solvents towards green polymeric materials. Green Chem. 2024.
[214] Alqahtani AS. Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis. J Mol Liq. 2024:124469.
[215] Hui X-Y, Zuo C, Xu Y, Wang B, Wen J-L, Yuan T-Q. Facilitating the fabrication of diverse bio-based nanomaterials from bamboo using one-pot hydrated deep eutectic solvent pretreatment. Chem Eng J. 2024;493:152517.
[216] Abbasi F, Sardarian AR. Triethanolamine-based deep eutectic solvent as a novel, biocompatible, reusable, and efficient dual catalyst/solvent media for the selective tosylation and mesylation of phenols. Tetrahedron. 2024;152:133780.
[217] Abbasi F, Sardarian AR. Efficient base-and ligand-free palladium catalysed O-arylation of phenols in choline chloride: triethanolamine as a reusable deep eutectic solvent. R Soc Open Sci. 2024;11:240045.
[218] Asadi AMS, Cichocki Ł, Atamaleki A, Hashemi M, Lutze H, Imran M, et al. Catalysts for advanced oxidation processes: deep eutectic solvents-assisted synthesis–a review. Water Resour Ind. 2024;31:100251.
[219] Ünlü AE, Arιkaya A, Takaç S. Use of deep eutectic solvents as catalyst: a mini-review. Green Process Synth. 2019;8:355-372.
[220] Najaf-Abadi MK, Ghobadian B, Dehghani-Soufi M. A review on application of deep eutectic solvents as green catalysts and co-solvents in biodiesel production and purification processes. Biomass Convers Biorefinery. 2024;14:3117-3134.
[221] Cheshmekhezr S, Rothee SR, Nazaripour M, Rahman A, Heidari H, Masrura SU, et al. Exploring ionic liquids and deep eutectic solvents for emerging contaminant removal from water and wastewater. npj Mater Sustain. 2024;2:1-11.
[222] Bintanel-Cenis J, Fernández M, Gómara B, Ramos L. Critical overview on the use of hydrophobic (deep) eutectic solvents for the extraction of organic pollutants in complex matrices. Talanta. 2024;270:125599.
[223] Wang J, Liu F, Peng Q, Zhang X, Gao Z, Zhang P, et al. Unveiling solubilization mechanisms of natural deep eutectic solvents in triazole fungicides: COSMO-RS calculations and screening for eco-friendly, high-efficiency pesticide systems. ACS Sustain Chem Eng. 2024;12:13149-13162.
[224] Cisternino G, Baldassarre F, Ciccarella G, Mastrorilli P, Dell’Anna MM. Microwave assisted treatment of carpentry waste wood flour with natural deep eutectic solvents for nanocellulose production and removal of organic pollutants. Carbohydr Polym Technol Appl. 2024;8:100572.
[225] Wan H, Zhu Z, Sun D-W. Deep eutectic solvents (DESs) films based on gelatin as active packaging for moisture regulation in fruit preservation. Food Chem. 2024;439:138114.
[226] Mercadal PA, Picchio ML, González A. Food-protecting films based on soy protein isolate and natural deep eutectic solvents: antimicrobial and antioxidant properties. Food Hydrocoll. 2024;147:109414.
[227] Wang Z, Wang D, Fang J, Song Z, Geng J, Zhao J, et al. Green and efficient extraction of flavonoids from Perilla frutescens (L.) Britt. leaves based on natural deep eutectic solvents: process optimization, component identification, and biological activity. Food Chem. 2024;452:139508.
[228] Castro-Muñoz R, Aslι CK, Mohammad SK, Grzegorz B, Jimena H-PF, Shahida AS, et al. Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications–a review. Crit Rev Food Sci Nutr. 2024;64:10970-10986.
[229] Yuan J, Li J, Huang J, Wu H, Tan J, Li H. Pyro-assisted deep eutectic solvents pretreatment of lignocellulosic biomass: a review. Ind Crop Prod. 2024;222:119641.
[230] Liu J, Jiang X, Li Z, Li N, Li T. Parametric studies on pretreatment of lignocellulosic biomass via deep eutectic solvents: Enhancing densified pellet quality. Ind Crop Prod. 2024;208:117850.
[231] Luo H, Zhou T, Zhang R, Yang Q, You X, Wang S, et al. Conversion of biomass to biofuels: Integration of a ternary deep eutectic solvent pretreatment and microbial fermentation for C2-C4 bioalcohols production from lignocellulose. Ind Crop Prod. 2024;220:119271.
[232] Mardani A, Streimikiene D, Cavallaro F, Loganathan N, Khoshnoudi M. Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017. Sci Total Environ. 2019;649:31-49.
[233] Kumar M, Sundaram S, Gnansounou E, Larroche C, Thakur IS. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresour Technol. 2018;247:1059-1068.
[234] Mukherjee A, Okolie JA, Abdelrasoul A, Niu C, Dalai AK. Review of post-combustion carbon dioxide capture technologies using activated carbon. J Environ Sci. 2019;83:46-63.
[235] García G, Atilhan M, Aparicio S. Interfacial properties of deep dutectic solvents regarding to CO2 capture. J Phys Chem C. 2015;119:21413-21425.
[236] Karadas F, Atilhan M, Aparicio S. Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels. 2010;24:5817-5828.
[237] Peters L, Hussain A, Follmann M, Melin T, Hägg MB. CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chem Eng J. 2011;172:952-960.
[238] García G, Atilhan M, Aparicio S. Interfacial properties of deep eutectic solvents regarding to CO2 capture. J Phys Chem C. 2015;119:21413-21425.
[239] Kussainova D, Shah D. Monoethanolamine based DESs for CO2 absorption: insights from molecular dynamics simulations. Sep Purif Technol. 2020;231:115931.
[240] Alioui O, Benguerba Y, Alnashef IM. Investigation of the CO2-solubility in deep eutectic solvents using COSMO-RS and molecular dynamics methods. J Mol Liq. 2020;307:113005.
[241] Ma C, Laaksonen A, Liu C, Lu X, Ji X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev. 2018;47:8685-8720.
[242] Di Pietro ME, Hammond O, van den Bruinhorst A, Mannu A, Padua A, Mele A, et al. Connecting chloride solvation with hydration in deep eutectic systems. PCCP. 2021;23:107-111.
[243] Shah D, Mjalli FS. Effect of water on the thermo-physical properties of reline: an experimental and molecular simulation based approach. PCCP. 2014;16:23900-23907.
[244] Kumari P, Shobhna, Kaur S, Kashyap HK. Influence of hydration on the structure of reline deep eutectic solvent: a molecular dynamics study. ACS Omega. 2018;3:15246-15255.
[245] Weng L, Toner M. Janus-faced role of water in defining nanostructure of choline chloride/glycerol deep eutectic solvent. PCCP. 2018;20:22455-22462.
[246] Yadav A, Pandey S. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J Chem Eng Data. 2014;59:2221- 2229.
[247] Dai Y, Witkamp G-J, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015;187:14-19.
[248] Zheng Q, Yang F, Tan H, Wang X. Influence of water on the properties of hydrophobic deep eutectic solvent. J Chem Thermodyn. 2024;195:107306.
[249] Faraji S, Mokhtarpour M, Behboudi E, Sadrmousavi A, Shekaari H, Zafarani-Moattar MT. Vapor–liquid equilibria and computational study for aqueous solutions of novel deep eutectic solvents (amino acid/lactic acid) at 298.15 K. J Chem Eng Data. 2020;65:3262-3269.
[250] Bezerra-Neto JR, Bezerra LL, Sousa NG, dos Santos LPM, Marinho ES, Monteiro NKV, et al. Molecular approach about the effect of water on the electrochemical behaviour of Ag+ ions in urea-choline chloride-water mixture. J Mol Model. 2020;26:339.
[251] Ghorpade UV, Suryawanshi MP, Shin SW, Wang X, Jo E, Bae H, et al. Eutectic solvent-mediated selective synthesis of Cu–Sb–S-based nanocrystals: combined experimental and theoretical studies toward highly efficient water splitting. J Phys Chem A. 2018;6:19798-19809.
[252] Busato M, Di Lisio V, Del Giudice A, Tomai P, Migliorati V, Galantini L, et al. Transition from molecularto nano-scale segregation in a deep eutectic solvent-water mixture. J Mol Liq. 2021;331:115747.
[253] Huang L, Bittner JP, Domínguez de María P, Jakobtorweihen S, Kara S. Modeling alcohol dehydrogenase catalysis in deep eutectic solvent/water mixtures. ChemBioChem. 2020;21:811-817.
[254] Kumari P, Kumari M, Kashyap HK. How pure and hydrated reline deep eutectic solvents affect the conformation and stability of lysozyme: insights from atomistic molecular dynamics simulations. J Phys Chem B. 2020;124:11919-11927.
[255] Shehata M, Unlu A, Sezerman U, Timucin E. Lipase and water in a deep eutectic solvent: molecular dynamics and experimental studies of the effects of water-in-deep eutectic solvents on lipase stability. J Phys Chem B. 2020;124:8801-8810.
[256] Gujjala LKS, Kundu D, Dutta D, Kumar A, Bal M, Kumar A, et al. Advances in ionic liquids: synthesis, environmental remediation and reusability. J Mol Liq. 2024;396:123896.
[257] Singh MB, Kumar VS, Chaudhary M, Singh P. A mini review on synthesis, properties and applications of deep eutectic solvents. J Indian Chem Soc. 2021;98:100210.
[258] Xin K, Roghair I, Gallucci F, van Sint Annaland M. Total vapor pressure of hydrophobic deep eutectic solvents: experiments and modelling. J Mol Liq. 2021;325:115227.
[259] Chen C-C, Huang Y-H, Fang J-Y. Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination. J Hazard Mater. 2022;424:127366.
[260] Chen Y, Han X, Liu Z, Li Y, Sun H, Wang H, et al. Thermal decomposition and volatility of ionic liquids: factors, evaluation and strategies. J Mol Liq. 2022;366:120336.
[261] Wang J, Wang Y. Strategies to improve the quantum computation accuracy for electrochemical windows of ionic liquids. J Phys Chem B. 2024;128:1943-1952.
[262] Azmi S, Koudahi MF, Frackowiak E. Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications. Energy Environ Sci. 2022;15:1156-1171.
[263] Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: a review. Electrochem Sci Adv. 2023;3:e2100199.
[264] Wu J, Liang Q, Yu X, Lü QF, Ma L, Qin X, et al. Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Adv Funct Mater. 2021;31:2011102.
[265] Brown SJ, Christofferson AJ, Drummond CJ, Han Q, Greaves TL. Exploring solvation properties of protic ionic liquids by employing solvatochromic dyes and molecular dynamics simulation analysis. Liquids. 2024;4:288-304.
[266] Ferreira ML, Vieira NSM, Castro PJ, Vega LF, Araújo JMM, Pereiro AB. Understanding the phase and solvation behavior of fluorinated ionic liquids. J Mol Liq. 2022;359:119285.
[267] de Jesus SS, Maciel Filho R. Are ionic liquids eco-friendly? Renew Sustain Energy Rev. 2022;157:112039.
[268] Santhosh Kumar S, Ramesh Kumar S. Ionic liquids as environmental friendly cutting fluids-a review. Mater Today Proc. 2021;37:2121-2125.
[269] Prabhune A, Dey R. Green and sustainable solvents of the future: deep eutectic solvents. J Mol Liq. 2023;379:121676.
[270] Lomba L, Ribate MP, Sangüesa E, Concha J, Garralaga MP, Errazquin D, et al. Deep eutectic solvents: are they safe? Appl Sci. 2021;11:10061.
[271] Li Z, Qi H, Kun W, Shaoyu S, Yaju X, Xiuling J, et al. Ionic liquids as a tunable solvent and modifier for biocatalysis. Catal Rev. 2024;66:484-530.
[272] El Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021;19:3397-3408.
[273] Atilhan M, Aparicio S. Review and perspectives for effective solutions to grand challenges of energy and fuels technologies via novel deep eutectic solvents. Energy Fuels. 2021;35:6402-6419.
[274] El Achkar T, Greige-Gerges H, Fourmentin S. Understanding the basics and properties of deep eutectic solvents. In: Fourmentin S, Costa Gomes M, Lichtfouse E, editors. Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances. Cham: Springer International Publishing; 2021. p. 1-40.
[275] Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357- 6426.
[276] Yavir K, Konieczna K, Marcinkowski Ł, Kloskowski A. Ionic liquids in the microextraction techniques: the influence of ILs structure and properties. TrAC, Trends Anal Chem. 2020;130:115994.
[277] Stephens NM, Smith EA. Structure of deep eutectic solvents (DESs): what we know, what we want to know, and why we need to know it. Langmuir. 2022;38:14017-14024.
[278] Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108-7146.
[279] Magagnin L, Bernasconi R, Panzeri G, Accogli A, Liberale F, Nobili L, et al. Electrodeposition from Deep Eutectic Solvents. In: Handy S, editor. Ionic Liquids - Progress and Developments in. Rijeka: IntechOpen; 2017.
[280] Clare B, Sirwardana A, MacFarlane DR. Synthesis, purification and characterization of ionic liquids. In: Kirchner B, editor. Ionic Liquids. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 1-40.
[281] Chen S, Zhang S, Liu X, Wang J, Wang J, Dong K, et al. Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. PCCP. 2014;16:5893-5906.
[282] Yu D, Xue Z, Mu T. Deep eutectic solvents as a green toolbox for synthesis. Cell Reports Physical Science. 2022;3.
[283] Sharma G, Sequeira RA, Pereira MM, Maity TK, Chudasama NA, Prasad K. Are ionic liquids and deep eutectic solvents the same?: fundamental investigation from DNA dissolution point of view. J Mol Liq. 2021;328:115386.
[284] Zhang H, Vicent-Luna JM, Tao S, Calero S, Jiménez Riobóo RJ, Ferrer ML, et al. Transitioning from ionic liquids to deep eutectic solvents. ACS Sustain Chem Eng. 2022;10:1232-1245.
[285] Jha D, Maheshwari P, Singh Y, Haider MB, Kumar R, Balathanigaimani MS. A comparative review of extractive desulfurization using designer solvents: Ionic liquids & deep eutectic solvents. J Energy Inst. 2023;110:101313.
[286] Xu C, Cheng Z. Thermal stability of ionic liquids: current status and prospects for future development. Processes. 2021;9:337.
[287] Chen Y, Liang H, Bi Z, Li Z, Sun H, Wang J, et al. Evaluating thermal decomposition of ionic liquids and deep eutectic solvents for reliable and consistent thermal analysis: issues, factors, classifications and suggestions. Thermochim Acta. 2023;723:179471.
[288] Chen Y, Yu D, Liu Z, Xue Z, Mu T. Thermal, chemical, electrochemical, radiolytic and biological stability of ionic liquids and deep eutectic solvents. New J Chem. 2022;46:17640-17668.
[289] Lei Z, Dai C, Hallett J, Shiflett M. Introduction: ionic liquids for diverse applications. Chem Rev. 2024;124:7533-7535.
[290] Kaur S, Kumari M, Kashyap HK. Microstructure of deep eutectic solvents: current understanding and challenges. J Phys Chem B. 2020;124:10601-10616.
[291] Tang B, Row KH. Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chemie. 2013;144:1427-1454.
[292] Fischer R, Lugg R. The real cost of ILS ownership. The Bottom Line. 2006;19:111-123.
[293] Cruz H, Jordão N, Branco LC. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green Chem. 2017;19:1653-1658.
[294] Płotka-Wasylka J, de la Guardia M, Andruch V, Vilková M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020;159:105539.